Instant Occlusion - Meteorological Physical Background

by ZAMG and FMI


In the Instant Occlusion process two conceptual models interact, namely a Comma and a Cold Front. The location of the instant occlusion is often the left exit area of a diffluent upper trough.

The Cold Front is connected with a large upper trough. In this trough there is a smaller secondary trough moving faster than the large trough. In the secondary trough there is convective cloud development, a Comma. The development involves the expansion of a cloud cluster into a baroclinic leaf with cyclonic rotation.

Because the smaller trough is moving faster than the large one, Comma overtakes the frontal cloudiness and the two cloud systems merge. Often there is simultaneously going on a wave development within the polar front. The result is a cloud system that resembles an occlusion, but without the actual occlusion process. If the Comma merges with the frontal cloudiness in the area of a Wave, the Occlusion-like feature is very pronounced.

Initial (pre-merging) stage:

Merging stage:

Discussion: The relative stream point of view

The Initial Stage:

Within and ahead of the Comma an ascending stream of warm and moist air is orientated from southern to northern directions in lower layers. Within the middle and upper levels of the troposphere, dry air moves around the upper level trough overrunning the Comma tail and turning to northern directions parallel to the rear cloud edge of the Cold Front. The vertical stratification of relative stream with warm, moist air and dry air above causes a potential unstable stratification in the shallow moist zone between the two cloud features.

The Merging Stage:

The potential unstable stratification within the area of the shallow moist zone will now be released due to the developing ascending motion. The ascending motion is caused by the combination of WA and PVA which contributes to upward motion; in particular WA is connected with the Wave feature at the Cold Front. As a consequence of this process rapid cloud development can be observed in the shallow moist zone. Due to WA ahead of the Comma a thermal gradient is generated on its northern side.

Features of relative streams:

Final Stage:

In the end of the development the cloud configuration may resemble Cold Conveyor Belt occlusion (see Occlusion: Cold Conveyor Belt Type ), or the part of the cloudiness that resembles an occluded front, can dissolve.

The case studies, however, have shown that the relative stream structure described above can not always be found. More investigations with high resolution model would be needed.


Menu Of Instant Occlusion
Cloud Structure In Satellite Images
Key Parameters