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Synopsis:   

The characteristics of the time series of relative humidity (daily averages) and possible breaks have 

been investigated and according to these results, different benchmark datasets have been created, 

representing real characteristics of inhomogeneous time series, but with known inhomogeneities and 

break locations. These datasets have been homogenised during a blind test by 17 homogenisation 

methods (different combinations of break detection and break correction and different configurations). 

Most of the methods underestimate the number of breaks in the time series. For the correction of the 

time series two of the methods (MASH and ACMANT) show similar ability. ACMANT has been used to 
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homogenise Austrian station data of relative humidity. The homogenisation showed a strong impact on 

the trend of relative humidity. The data was used for different analyses with stakeholders concerning 

gradients and pollutants as well as for climatological analyses. 
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2 Technical /Scientific Description of the Project  

2.1 Project abstract (max. 2 pages)  

Daily homogenisation is of more and more importance for climatological studies. During the last 

years, the abilities of different methods to homogenise daily data of temperature and 

precipitation have been developed and tested. Nevertheless, other parameters such as humidity 

can also be important, and therefore different methods have been tested in this project for their 

ability to homogenise this parameter. From all the possible humidity parameters, relative 

humidity (daily averages) was chosen, as this parameter is the most widely used by the 

stakeholders of the project. Humidity is not only of climatological importance, but also has an 

influence on building materials, different plants and the ability to produce artificial snow. 

 

The four different homogenisation methods used have been used in the past in the COST-Action 

ES0601 and tested for temperature and precipitation. As most of the methods can be used with 

different settings, 17 different results for the homogenisation tests have been produced. In order 

to get an objective estimate of the ability of the different methods, a surrogate dataset containing 

different difficulties was created. This dataset reproduced the statistical characteristics of relative 

humidity and possible breaks. This statistics resulted from studies of parallel measurements and 

the available metadata of the Austrian stations (including number of relocations and 

instrumentations changes). The ability of break detection and correction has been analysed. 

Afterwards the best of these methods has been implemented to homogenise real Austrian 

station data. 

Furthermore, the relative humidity data, together with the homogenised temperature data of the 

ACRP HOM-START project (K09AC0K00025) was used for different analyses done together 

with the stakeholders and in climatological studies showing the effect of the homogenisation. 

 

Due to the small break signal in the relative humidity time series, the detection of these breaks 

is challenging for all the methods. The highest efficiency in detecting breaks was found using 

ACMANT and HOMOP. For the assessment of the quality of the correction of time series the 

parameters RMSE, variance and trend deviations have been used as criteria. ACMANT and 

MASH showed the best correction results in the realistic case of the surrogate data.  

Due to its ability to accurately detect and correct, ACMANT was chosen for homogenising the 

Austrian relative humidity data. A homogenisation of 34 stations was possible. Without taking 

individual station inspection into account, about half of the breaks found in the time series could 

be confirmed by metadata. 

The analyses of the homogenised data showed that the trend in most of the time series grew 

stronger, having a negative slope during the measuring period of the individual time series, 
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starting in 1948 in the earliest for these homogenisations. This is in agreement with the dataset 

homogenised in HOM-START, where the same maximal starting year was used and the same 

pool of stations was homogenised. The homogenisation led to higher medians of relative 

humidity during all months of the year.  

For the analyses of the stakeholders data of relative humidity, minimum and maximum 

temperature and global radiation data was prepared. For some of the stakeholders, only data 

preparation was done (including the choice of possible stations), as they preferred not to give 

away their own data. For the others, correlations to pollutants and the height gradients of relative 

humidity were analysed. 

In the future, further improvements in homogenisation methods might be needed. At the 

moment, metadata is not included in ACMANT and there is no possibility to influence the break 

timing chosen by the software. Moreover, no uncertainty measures are available. A combination 

of the advantages of ACMANT with the advantages of HOMOP seems desirable. Additionally, 

analyses of the possibility to use datasets of different parameters homogenised with different 

methods together would be necessary.  

  

 

2.2 Contents and results of the project (max. 20 pages)  

1) Motivation 

To achieve reliable results on the development of the past climate, it is necessary to use well-

homogenised data. Homogeneous datasets are influenced by climate alone. Original 

observational data include effects caused by station location, used instrumentation, the 

observer, etc. (Aguilar et al. 2003).  

To remove those effects, statistical methods are applied to adjust data from earlier periods to 

the current situation of the station. This process is called homogenisation. 

Homogenisation of meteorological data has already been performed for different parameters on 

monthly resolution since about 20 years. During the last years, the interest in and the activity for 

homogenised daily data increased (e.g.: COST-Action ES0601 www.homogenisation.org) 

In contrast to temperature and precipitation, which have been in the focus of daily 

homogenisation until now, relative humidity shows a strict upper and lower limit of possible 

values and the values have limited range. Therefore only small, but nevertheless potentially 

important, breaks are to be expected, as bigger breaks can be found by data quality control and 

technical support easily. Moreover, instrumentation of relative humidity measurements is 

changed more frequently than that of other parameters. Therefore homogenisation methods for 

relative humidity have to be able to detect small but potentially frequent breaks. 
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2) Objectives of the project 

This project aimed to test different methods used for homogenisation of daily data and used 

within the COST-Action ES0601 on their ability to meet the requirements for homogenising daily 

relative humidity. If a successful method could be identified, a set of Austrian stations 

(STARTCLIM-dataset) was to be homogenised. As for those stations where daily temperature 

extremes and precipitations were already homogenised, this additional homogenised parameter 

is especially valuable. 

In addition, analyses with these data concerning climate change and the effect of the 

homogenisation itself have been done as well as analyses that were performed in cooperation 

with stakeholders. 

 

3) Activities  performed within the project 

a) Surrogate dataset 

A surrogate dataset is a dataset of artificially created data that has the statistical properties of 

real data. The characteristics of the homogeneous data are the statistical probability distribution 

and the cross- and auto-correlations. Inhomogeneities are added to this data.  

 

� Analysis of real stations 

In order to get information on the size of possible inhomogeneities, parallel measurements for 

different stations in Austria were analysed to collect information on differences in the distribution 

of measured values during the different seasons and the year. The stations used are listed in 

Table 1.  
Table 1: List of stations used for analyses of para llel measurements 

station start End station start End 

Kremsmünster  19880101 20081231 Amstetten 19701001 19771130 

Salzburg  19920201 20060331 Retz  19940101 19950531 

Innsbruck  19920701 20130526 St.Pölten 20030701 20050630 

Bregenz  19930101 20130331 Waidhofen 20021001 20041231 

Feuerkogel  19891001 20081231 Jauerling 19940101 19950630 

Patscherkofel  19930819 20080101 Mallnitz 19870220 20020801 

Sonnblick  19881101 20081231 Sillian 19960901 19990930 

Kufstein 19920601 20021231 Leibnitz  19941203 20041231 

Additionally, the number and temporal distribution of breaks (based on station relocations and 

changes of instrumentation) was analysed by the study of metadata for the stations distributed 

over Austria. 

Moreover, 6 networks of 4 to 6 highly correlated Austrian stations were created, which represent 

different regions of Austria (Figure 1). For those networks, a homogeneity test was executed on 

the monthly data with HOMER (Mestre et al., 2013), created within the COST-Action ES0601. 

This data was used in the following to create surrogate datasets with 100 years of length in 

different complexities by the project partner Victor Venema at the University of Bonn. 
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Figure 1: Networks 

used for Surrogate 

dataset 

 

 

 

 

 

 

 

� Creation of the surrogate datasets 

A stochastic simulation method (IAAFT, iterative amplitude adjusted Fourier transform 

(Schreiber und Schmitz 1996, Schreiber and Schmitz 2000, Venema et al 2006a-c)) was used 

to create the long-term homogeneous surrogate dataset from the short homogeneous station 

data of the different networks. The method allows simulating the exact distribution of the data, 

which is especially important for relative humidity, where the maximal value of 100% must not 

be exceeded. 

The autocorrelations are constrained by reproducing the power spectrum. The empirical 

distribution of the measurement is used as input to the IAAFT algorithm. The seasonal cycle is 

modelled by simulating an empirical distribution for every month. The distribution of the 

difference time series (cross-correlations) also has a seasonal cycle this way and together with 

the power spectrum models the cross-correlation matrix. 

Judging from the way the spectrum is computed from short time series, variability on decadal 

scales is likely too weak. Therefore we explicitly model the decadal variability as a smooth noise 

time series with a power law power spectrum with exponent -4. This time series is normalised 

to a mean of zero and its standard deviation is about 6% of the variability of the homogeneous 

data. The same variability was added to every time series in one network. 

The statistical properties of the century long surrogate datasets accurately match those of the 

stations they are based on. This means that the autocorrelation function and the distribution 

match well and only the cross correlations between the stations are too low over the entire 

seasonal cycle. This indicates that the convergence of the iterative algorithm was not ideal, 

which is likely due to the strongly non-Gaussian distribution of the humidity data. The deviations 

seem acceptably small for this application, however. The cross correlations of the surrogate 

data could represent a network with a slightly different geographical configuration. Nevertheless, 

higher correlations can also be found for some networks and months. 

� Including of inhomogeneities 

Three different kinds of inhomogeneities have been created: “deterministic”, “stochastic” and 

“realistic”. 
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In the realistic case, three kinds of missing data are included: 1) The number of stations 

increasing with time. 2) During the Second World War (1940-1946) more data are missing than 

during other periods. In 1946 75% of stations have missing data and stations with missing data 

in one year, have a 75% probability of having missing data in the preceding year as well. 3) 

Random missing data was inserted. The probability of one new missing data value being 

inserted is 0.0016. The next day has a 75% probability of also being missing. 

Inhomogeneities are modelled as a power law power spectrum with exponent -4; see x-axis of 

Figure 2. In addition they have a seasonal cycle, which is generated by repeatedly smoothing 

white noise (periodic boundary conditions) and normalising it; y-axis of Figure 2. After adding 

the perturbations (example see Figure 2), tapering is applied to avoid relative humidity values 

above 100%. 

In the case of the stochastic and realistic dataset, white noise was added to the inhomogeneities. 

The standard deviation of this white noise was modelled in the same way as the deterministic 

inhomogeneities. 

 
Figure 2: Example of break as function of 

homogeneous value and day of the year 

 

 

 

 

 

 

 

In the first two datasets, breaks are inserted with a frequency of 1 break/13years. In the realistic 

dataset the breaks are more frequent in the beginning of the time series. 

The mean of the break size changes linearly in time to create a bias in the relative humidity of 

2% over the century. To reduce problems with the upper level, it was assumed that old values 

were biased 2% too low. Information on real long term biases is not available, but including a 

bias was seen as desirable to be able to assess how well the methods would handle a trend if 

there was one. 

 

b) Handling of simultaneous breaks  

At the turn of the year 1970 to 1971, the evening observation in the whole meteorological 

network of Austria was changed from 9pm to 7pm. As this was done simultaneously, no relative 

homogenisation can be applied. Therefore an alternative method for adjusting these breaks was 

developed using hourly data for training and validation. To adjust the 9pm value, different 

methods like spline interpolation, similarity approach (Brandsma and Können, 2006), linear 

interpolation between the adjacent measurements, multiple linear regression model and 

seasonal multiple linear regression model were tested. The best results were achieved using 
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the seasonal multiple regression model, using the measurements of this day and the 7am 

measurement of the following day as well as the time of sunrise and sunset. The original range 

of RMSE for those stations was reduced from -0.5% to 3% to the range of -0.5% to 0.5%. 

Nevertheless, the coefficients seem to depend on small scale features, so that no general 

coefficients could be found. Therefore only those stations for which hourly values are available 

before and after 1971 could be corrected. Only 17 stations have been corrected in this manner. 

The corrections vary between ±11%, with one third of the corrected data points needing no 

correction. 

 

c) Homogenisation  

� Methods 

The following methods, being used in the comparisons of the COST-Action ES0601 on daily 

temperature data, have been applied to the surrogate dataset of relative humidity (daily 

average): 

 

HOMOP: (Gruber et al., 2009, Nemec et al., 2012) 

Break detection is done with PRODIGE (Caussinus & Mestre, 2004), applying a penalised 

likelihood method comparing the candidate stations with as many reference series as possible. 

Three different penalty-terms are used. And in this project two different criteria were applied to 

decide if a break signal is strong enough to indicate a break. The usual criterion for a break is 

that the signal is shown by at least half of the reference stations in at least two seasons by at 

least 2 penalty term versions. With the second criterion used in this project, only the results of 

one penalty term has to indicate a break in two seasons for more than half of the reference 

stations. 

Two different break correction methods have been applied: In one case, the correction was done 

by SPLIDHOM (Mestre et al, 2011) using a spline regression, resulting in different corrections 

for different values. Outside of the data range of the reference period, a constant correction was 

applied.  

The second correction method is INTERP (Vincent et al. 2002), calculating daily adjustments by 

interpolation of monthly adjustments. 

Moreover, two different options of reference periods have been tested: in one case the maximum 

possible reference length was used, and in the other case the reference period was reduced to 

a maximum of 5 years to minimize the possibility of breaks in the reference series within this 

period. 

 

ACMANT: (Domonkos, 2011) 

This fully automatic method was developed for temperature data in mid- and higher latitudes. 

Composite data of at least 30years length are used as reference. The detection is based on 

PRODIGE (Caussinus & Mestre, 2004), but there are some differences:  
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1) the reference series are prehomogenised 

2) a bivariate detection (for annual values and the seasonal amplitude) is used  

3) homogeneous parts of the time series longer than 3 years are detected separately from 

inhomogeneities that have a strong signal, but result in a short homogeneous part of the 

time series (only 3-60month between two breaks) 

4) a composite reference is used instead of pairwise comparison of stations  

The correction is based on ANOVA, excluding breaks that are not significant and correcting only 

those significant ones. The adjustments are calculated from monthly correction values. 

The stations of the whole network are homogenised using this method. 

 

MASH: (Szentimrey, 1999) 

This iterative method uses all stations as candidate stations and reference stations. In each 

iteration, the homogenisation is based on the results of the last step. The homogeneity test is 

done using test statistics. Daily adjustments are based on monthly ones. 

To apply this method it was necessary to divide the measurements by 10. 

The method was applied in two ways: In one version a fully automatic script was started, which 

is not recommended by the authors, and in the second version the homogenisation was done 

interactively, changing break points if they seemed unrealistic. As no metadata was available 

for the tests of the benchmark dataset, it seemed possible that the fully automatic process might 

lead to better results than a human without any additional information on the breaks. 

 

PROCLIM: (Št ěpánek, 2008) 

This software combines many different detection and correction methods. Following the 

recommendation of P. Štěpánek, 3 different break detection methods (SNHT, bivariate, t-test) 

and their combination and 2 correction methods where chosen. One of the corrections used 

daily adjustments based on monthly corrections and the second one used the q-q-method for 

directly determining daily adjustments. 

 

A total of 17 different methods (including different options for one and the same algorithm) were 

applied to the surrogate dataset in order to find the method best suited for homogenisation of 

relative humidity. In Table 2 the different methods and their abbreviation in the different plots 

are listed. 
Table 2: Abbreviations used in the plots for origin al data and homogenisation methods 

Method  Nr. Abbreviation  
searched homogeneous time series 0 soll 
Inhomogeneous original time series 1 Ausgang 
ACMANT 2 ACMANT 
MASH 3 MASH 
MASH with interaction 4 MASHeingriff 
HOMOP using Splidhom 5 HOMOP 
HOMOP using Splidhom with changed break detection criteria 6 HOMOP_get1crit, 

HOMOP_crit2 
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HOMOP using Splidhom with shortened reference period 7 HOMOP_get1crit_kref, 
HOMOP_crit2_kurzRef 

HOMOP using Vincent  8 HOMOPvin 
HOMOP using Vincent with changed break detection criteria 9 HOMOPvin_get1crit, 

HOMOPvin_crit2 
HOMOP using Vincent with shortened reference period 10 HOMOPvin_get1crit_kref, 

HOMOPvin_crit2_kurzRef 
PROCLIM with merged break detection and monthly correction 11 PROCLIM_m102 
PROCLIM with SNHT break detection and monthly correction 12 PROCLIM_a102 
PROCLIM with bivariate break detection and monthly correction 13 PROCLIM_b102 
PROCLIM with t-Test break detection and monthly correction 14 PROCLIM_t102 
PROCLIM with merged break detection and qq correction 15 PROCLIM_m106 
PROCLIM with SNHT break detection and qq correction 16 PROCLIM_a106 
PROCLIM with bivariate break detection and qq correction 17 PROCLIM_b106 
PROCLIM with t-Test break detection and qq correction 18 PROCLIM_t106 

 

� Testing homogenisation methods 

The methods are validated using the surrogate datasets. They have been created artificially, but 

represent the statistical characteristics of the real data. In contrast to real data, the breaks are 

known and in comparing the inhomogeneous surrogate data and the homogenised data to the 

homogeneous surrogate data (the surrogate data, before breaks have been included), the effect 

of the homogenisation can be measured. 

Two abilities of the homogenisation methods have been tested: 

 *) break detection 

 *) quality of the homogenised dataset (RMSE, trends, variability) 

As it is difficult and partly impossible to include the breaks not found by the method itself (e.g. 

by fully automated systems without any possibility of interaction), no comparisons were done 

testing the correction methods by using the correct timing of the breaks. 

The homogenisation of the surrogate data was done without knowledge about the timing of the 

breaks. 

 

Break detection 

In Figure 3, an example of the break detection for a time series in the deterministic surrogate 

dataset is shown. In the upper part of the figure, the inhomogeneities of the different breaks of 

this time series is shown as a function of the measured value and for the different seasons. The 

timing of the breaks can be found on the x-axis. The multicolour circles in the middle part of the 

plot show which method detected this specific break and in the lower part all the breaks detected 

by the different methods are displayed (colours following the same code as the multicolour 

cycles). A break is defined as detected as soon as the detection takes place in the according 

year or +/-1year. The detection, e.g. in MASH, is done for each month separately, therefore the 

number of detected breaks is higher than e.g. for HOMOP. This was taken into account by only 

using one break per year for MASH. Breaks in neighbouring years were not counted as more 

than one if they could be attached to one and the same break of the surrogate dataset. 
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The ability in detection was calculated using the detection efficiency (Domonkos et al., 2011). 

The efficiency is defined as the ratio of correctly and falsely detected breaks to the number of 

searched (inserted) breaks: 

�� =
#����	
����� − #����	
�����

#����	�
�������
 

In the case that all breaks are correctly detected and no additional breaks are detected, ED is 1. 

For those methods that detect the breaks for each month separately (PROCLIM, MASH), the 

ED-values are strongly negative (Figure 4). A distinct improvement can be noted between MASH 

and MASHeingriff. Nevertheless, the efficiency stays negative for most of the time series. There 

are differences between the different detection methods of PROCLIM. In contrast to the other 

methods, the bivariate method shows a positive efficiency for most of the time series. 

Looking at differences in the different networks, it can be noted that the worst results are reached 

for network 5 and the best for network 4 and 8 in the deterministic case. Regardless, network 5 

shows the best, but still negative results, for 2 methods. MASHeingriff improves all the networks 

in comparison to MASH.  

In accordance with expectations, the detection efficiency for realistic networks is less than for 

the deterministic ones, as the detection is rendered more difficult by missing values, additional 

noise and different length of the time series. 

In the deterministic and the realistic case the methods ACMANT and HOMOP show the highest 

detection efficiency.  

All the methods classified some of the series as homogeneous. Most time series wrongly 

described as homogeneous occurred with HOMOP taking into account the deterministic and 

the realistic networks. Taking a look at the deterministic networks alone, MASHeingriff 

classified more time series wrongly 

Additionally, an analysis using ACMANT, MASH (automatic version only) and HOMOP was 

performed on the homogeneous time series, to see if those would be defined as homogeneous 

by the methods. All of the methods detected breaks, but their number was roughly an order 

smaller than in the inhomogeneous case.  

 

Break characteristic 

A further analysis was done in order to gain understanding of which characteristics the breaks 

found by the different methods would have to meet. The size of the break signal, the correlation 

within the network and the clustering of the breaks within the time series itself and in combination 

with breaks of the reference stations were taken into account. In order to keep this idea as simple 

as possible, only the deterministic validation datasets were used. The break was classified as 

“clustered” if more than one break lay within a time window of 5 years. 
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Figure 3: Examples of break detection of different methods: line plots in  the upper part: 

structure of the induced break for different season s (legend above) for the different 

breaks in the year (x-axis), in which the centre of  the plot is plotted. The legend for the 

axis of the plots can be found on the right of the vertical line in 2000). Middle part: 

Colours of this pie chart show which of the methods  have detected a break in this year 

(± 1year). The height of the centre of the circles indicates the yearly mean break size (see 

y-axis for the value) for the year. The orange lett ers give the mean break size for the 

seasons (F…spring, S…summer, H…autumn, W…winter). T he legend for the pie chart is 

given on the lower right site of the vertical line in 2000. 

Abbreviations for the Methods: A…ACMANT, H…HOMOP, H 1…HOMOP with changed 

break criteria, M…MASH, Me…MASH with interaction, P S….PROCLIM , Pb….PROCLIM 

bivariate, Pt…PROCLIM t-Test, Pm…PROCLIM merged). T he lines of dots in the lower 

part give the information about all detected breaks  by the methods (colours are the same 

as in the pie chart, diamonds indicate the 4 PROCLI M versions).  

Only 4 breaks in the surrogate dataset were not clustered with breaks in the reference time 

series and those occurred at the beginning of the time series (between 1901 and 1909). Half of 

them were not detected by any method, the other half was detected by 3-4 methods. About ¾ 

of all the breaks were additionally clustered with breaks of the time series itself. 

The percentage of correctly detected breaks increases with the correlation within the network. 

Moreover, the ratio of correctly detected breaks increases with the absolute value of the ratio of 

break size to the variance of the time series. In the case of the surrogate dataset of relative 

humidity, most of the breaks have a signal about the same size as the variance.  
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Figure 4: Detection efficiency for all time series for the different detection methods in the 

deterministic cases 

 

Break correction 

Not all methods have been able to provide complete solutions for all the networks, as for some 

methods and stations the correlation of the reference series was not sufficient. In the realistic 

case, the final quality control by MASH had to be skipped as the number of reference stations 

was not sufficient in these cases. The number of not solvable stations stays nearly the same in 

the deterministic and realistic case. Most problems had ACMANT and PROCLIM. However 

PROCLIM was not used in the realistic case for break correction as it gave the worst results in 

the deterministic case and moreover did not work satisfactorily on all computers. 

The improvement by homogenization of RMSE, variance (time series with removed annual cycle 

were used in this case) and trend of the homogenized time series were analysed. For RMSE 

and variance, only the part of the time series in which differences should/did occur was taken 

into account. Therefore the data between the newest break point (first detected or introduced in 

the surrogate dataset) and the beginning of the time series (oldest data point) was used. This 

causes slight differences in the length of the analysed time series with the different methods, 

but as only means are compared these differences seem of no consequence. The advantage of 

this method is that long homogeneous parts at the end of the time series (most current data) do 

not influence the results. All time series for which a homogenization result was achieved were 

taken into account, including time series classified as homogeneous by the homogenization 

method. 

Trends in relative humidity are (if existing) very small and not significant, but as the improvement 

of trends is one of the declared goals of homogenization, this parameter was also looked at.  

Following Domonkos et al. 2011 the RMSE-efficiency and the trend-efficiency were calculated: 

�������������� =
����������� − ���������������

�����������
∗ 100 
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Only ACMANT could solve the bigger part of the stations with a positive RMSE-efficiency (Figure 

5) in the deterministic cases. The ratio between positive and negative efficiencies is similar 

between HOMOP and MASH. PROCLIM gives the worst values of RMSE-efficiency and only a 

small portion of the stations can be improved. 

 
Figure 5: RMSE-Efficiency for all time series in th e deterministic networks for the different 

homogenisation methods. Green shows the number of t ime series with negative and positive 

efficiency. Time series with no change in the RMSE are not included there. 

 

In the realistic case ACMANT results in the highest number positive influenced time series 

(about half of the time series). All other methods did not improve a single time series.  

 

In the case of Trend-efficiency, all the methods improved about 1/2 to 2/3 of the time series. The 

best results are reached by ACMANT and HOMOP using spline corrections with the complete 

reference period. The highest number of negatively influenced time series resulted from 

PROCLIM using monthly correction with the breaks from the break detection methods t-test- 

and merged-break detection. In the realistic case, MASH improves most time series (improved: 

116/worsened: 44).The ratio of ACMANT is comparable, but less stations have been 



ACRP – Calls for Proposals 
 

Page 15 / 35 

 

homogenised by this method (improved: 91/worsened: 43). HOMOP shows the worst results 

with only about half the stations improved. 

 

A comparison of the differences of the variance between the optimal solution and the 

homogenised time series resulted in the deterministic cases in nearly no changes compared 

with the inhomogeneous data for MASH, MASHeingriff and HOMOP with Vincent correction, 

short reference period and the lighter break definition. All the other methods show a broader 

distribution with more extreme differences in the variance of the optimal solution. 

In the realistic case (Figure 6), it is still MASH that shows the smallest median of differences, 

but MASH is also worsening some of the time series. Once again, the human influence made 

MASH results slightly worse. When using ACMANT, the median of the homogenised series is 

similar to the median in the inhomogeneous cases, but some outliers show distinctly higher 

differences. The HOMOP methods give the worst results, showing an increase of variance in 

most of the time series. 

 
Figure 6: 

Differences of the 

variance compared 

to the optimal 

solution for all 

networks and 

stations for the 

realistic datasets. 

Numbers on the x-

Axis give the 

homogenisation 

methods (see 

Table 2) 

 

 

d) Homogenisation of Austrian time series 

As can be seen in the results of the tests with surrogate data, only MASH and ACMANT show 

an ability for homogenising daily averages of relative humidity. Therefore those methods were 

tried for homogenising real station data.  

Networks of 4 stations were built, of which all had a correlation of at least 0.6 and were located 

within a radius of 200km horizontal and 200m vertical. The period for homogenisation was 

chosen according to the already available data, starting in 1948 when possible. The period had 

to be shortened for some stations.  

MASH and ACMANT were able to provide solutions for those networks. The choice of the final 

homogenisation method used in this project was therefore taken somewhat subjectively, as 

MASH detected the first breaks right at the beginning of the time series, which resulted in very 
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short reference periods. Moreover, the test showed that ACMANT improves the RMSE better 

than MASH and gives similar results in the improvement of the trends. As relative humidity is 

often used in combination with other parameters, the improvement of RMSE seems quite 

important. Thus, although MASH has the advantage of including information on metadata and 

therefore of possible break points, ACMANT was chosen. 

 
Table 3: Information on the homogenised stations an d the homogenisation result: For breaks 

written in orange colour, meta-information within + /-1year can be identified (in case of Hohenau, 

no long term metadata was available). As valid meta data changes in the humidity instrumentation, 

changes in the observer and relocations (or the doc umented construction of building in the 

surrounding) were used. Station numbers written in blue mark those stations for which a 

correction of the change in observation time has be en done. The subjectively determined quality 

of the homogenisation is given in colour code (gree n: ok, orange: ~, red: bad). In the column 

“#stat” the number of stations in the network is sh own. 

Station  

Nr. 

Station  

(lon,lat,height[m]) 

# 

stat  

quality & 

comment 

# breaks  

90500 
(1948-2013) 

Retz 
(15°57‘,48°46‘,320) 

15  6 

(1977,1990,1992,1994,1997,2000) 

140100 
(1960-2013) 

Kollerschlag 
(13°50‘,48°36‘,714) 

14  9  

(1967,1973,1979,1981,1988,1991,2001,

2002) 

160100 
(1948-2013) 

Freistadt 
(14°30‘,48°30‘,539) 

11  7  

(1953,1958,1971,1989,1991,1998,2001) 

240000 
(1956-2013) 

Laa/Thaya 
(16°23‘,48°44‘,184) 

19  11  

(1963,1967,1968,1979,1983,1986, 

1991,1993,1997,2003,2009) 

260000 
(1949-2013) 

Hohenau 
(16°54‘,48°37‘,154) 

16  6  

(1949,1952,1959,1962,1969,2007) 

290000 
(1949-2013) 

Reichersberg 
(13°23’,48°20’,351) 

12  12 (1950,1955,1958,1962,1965,1976, 

1979,1985,1988,1995,2000,2004) 

341000 
(1948-2013) 

Pabneukirchen 
(14°40’,48°21’,554) 

14  6 

(1954,1957,1976,1982,1989,2004) 

380500 
(1948-2013) 

Krems 
(15°37’,48°25’,203) 

22  2 

(1973,1995) 

501200 
(1948-2013) 

Kremsmünster 
(14°08’,48°03’,382) 

17  8 

(1954,1962,1989,1992,1996,2001,2004,

2008) 

590400 
(1948-2013) 

Wien Hohe Warte 
(16°21’,48°15’,198) 

16  5 

(1962,1970,1987,1991,1993) 

599000 
(1948-2013) 

Schwechat 
(16°34’,48°07’,183) 

13  4 

(1971,1983,1994,2011) 
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630000 
(1948-2013) 

Salzburg 
(13°,47°48’,430) 

18  9 

(1954,1962,1968,1971,1979,1987, 

1994,1998,2010) 

691000 
(1953-2000) 

Großraming 
(14°31’,47°54’,379) 

8 few ref. in 

early years 
6 

(1956,1968,1973,1983,1985,1997) 

770400 
(1976-2013) 

Eisenstadt 
(16°32’,47°52’,184) 

15  4 

(1985,1988,1996,2003) 

964000 
(1963-2013) 

Bad Aussee 
(13°46’,47°37’,743) 

12  4 

(1975,1979,1983,1995) 

1180300 
(1948-2013) 

Universität Innsbruck 
(11°23’,47°16’,577) 

9 few ref. in 

early years 
2 

(1971,1979) 

1190100 
(1956-2013) 

Jenbach 
(11°45’,47°23’,530) 

14  11 

(1962,1968,1970,1976,1977,1982, 

1986,1997,2003,2009,2010) 

1232200 
(1948-2013) 

Zell/See 
(12°48’,47°20’,751) 

17 few ref. in 

early years 
7 

(1968,1975,1985,1989,1996,2001,2005 

1500100 
(1948-2013) 

Mayrhofen 
(11°51’,47°10’,640) 

11  8 

(1955,1964,1967,1976,1980,1992,2004) 

1540200 Rauris 
(13°,47°13’,941) 

16 few ref. in 

early years 
8 

(1961,1964,1977,1984,1989,1993,1999,

2003) 

1571200 
(1984-2013) 

Tamsweg 
(11°35’,47°08’,1025) 

7  3 

(1997,2008,2010) 

1591000 
(1952-2013) 

Stolzalpe 
(14°11’,47°07’,1291) 

8 few ref. in 

early years 
3 

(1980,1997,1999) 

1630000 
(1961-2007) 

Lobming 
(15°11’,47°03’,414) 

9  4 

(1975,1985,1994,1999) 

1640000 
(1965-2013) 

Flughafen Graz 

(15°26’,47°,340) 
13  4 

(1971,1990,1997,2000) 

1641200 
(1965-2013) 

Universität Graz 
(15°27’,47°05’,367) 

12  10 

(1968,1973,1978,1980,1983,1986,1992,

1996,1999,2003) 

1650000 
(1961-2013) 

Gleisdorf 
(15°42’,47°07’,377) 

14  5 

(1977,1984,1992,1998,2005) 

1671100 
(1955-2013) 

Wörterberg 
(16°06’,47°14’,404) 

19  7 

(1963,1973,1981,1986,1997,2003,2008) 

1770000 
(1948-2013) 

St. Jakob/Defreggental 
(12°21’,46°55’,1383) 

5 too few ref.  2 

(1996,1997) 

1790100 
(1948-2013) 

Lienz 
(12°48’,46°50’,661) 

13 few to no ref. 

in early years 
7 

(1965,1973,1986,1990,1995,1998,2004) 

1810000 
(1955-2001) 

Kolbnitz 
(13°19‘,46°52‘,603) 

12  4 

(1957,1963,1967,1988) 
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The networks were expanded with further reference stations to improve the homogenisation 

results. 

In Table 3, the stations for which a homogenisation was possible are displayed along with their 

coordinates, the number of reference stations used (not all of them where available through the 

whole period) and some information on the homogenisation and the data series.  

Some stations were excluded as the available time series was too short, too incomplete or 

because a sufficient number of reference stations was not found. An examples of the 

homogenisation is displayed in Figure 7. 

The quality of the homogenisation has not been assessed by the software so far. Therefore all 

time- series are to be called homogenised; nevertheless the quality of the homogenisation was 

subjectively determined by the length and number of available reference series. 

The change in the observation time in 1971 may still be found in some of the stations. This is 

especially true for those stations that have been corrected for this change. As ACMANT doesn’t 

offer the possibility to influence the used break points, the influence of the not corrected stations 

cannot be counteracted.  

 

e) Analyses of relative humidity 

� Stakeholder  

In cooperation with 4 stakeholders analyses of relative humidity showing the large potential of 

humidity series were defined. 

Where possible and necessary, homogenised temperature values of the project HOM-START 

(www.zamg.ac.at/cms/de/forschung/klima/datensaetze/homstart; Nemec et al. 2012) have 

been used and were prolonged by original data for the recent years. Daily mean temperature 

was calculated by averaging Tmin and Tmax.  For relative humidity in the original data, time 

correction was applied where possible and necessary. 

The annual cycle (on daily base) and trend has been removed for all time-series (if not stated 

otherwise below) for correlations. Both actions have been taken to remove “wrong” correlation 

information as all parameters are influenced by the annual cycle and trends. Without removing 

those effects, the correlation would be higher than by looking at the signal of the parameter itself 

(Table 5). As not all the parameters are normally distributed, the spearman’s rank correlation 

has been used. The statistical significance is given by the p-value. 

1880500 
(1951-2013) 

Preitenegg 
(14°55‘,46°56‘,1034) 

8 few ref. in 

early years 
7 

(1969,1993,1998,2001,2004,2007,2009) 

1980000 
(1961-2013) 

Reisach 
(13°09‘,46°39‘,646) 

9 few ref. in 

current years 
5 

(1971,1974,1986,1988,1995) 

2021200 
(1964-2013) 

Klagenfurt 
(14°19’,46°39’,450) 

16  7 

(1967,1975,1976,1998,2006,2008,2010) 

2040000 
(1961-2013) 

St. Michael ob 

Bleiberg 
(14°46’,46°34‘,532) 

19  5 

(1980,1986,2007,2009,2011) 
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Figure 7: Example of 

a real homogenised 

time series 

(Lobming). Upper 

panel: original data 

(Lobming: red) and 

reference series 

(black); middle panel: 

as upper panel but 

homogenised data; 

lower panel: Lobming 

original data (black) 

and homogenised 

(red). Displayed 

annual means. 

 

The analyses were repeated with the homogenised data if necessary, but no essential changes 

occurred.  

The first cooperation took place with Prof.DI.Dr. Hans-Peter Hutter of the Medical University of 

Vienna. He was interested in the influence of relative humidity and temperature on the 

concentration of air pollutants NO2 and PM10 in urban regions. The cities of Graz, Linz and 

Vienna were chosen. Further investigation concerning physical health indicators like the number 

of discharges from hospital and mortality (cardiovascular and respiratory) will be done by the 

stakeholder himself if necessary. 

The data on NO2 and PM10 was provided by the Federal government of Styria, Upper Austria 

and the Conservation department of the Vienna city administration. 

Information on NO2 and PM10 concentrations is not available at the same locations as the 

meteorological data. The locations of the stations used are given in Table 4. 
Table 4: Location of stations 

used for investigation of 

pollutants and meteorological 

parameters 

 

The correlations between the meteorological parameters and the pollutants have been 

calculated (Table 5) for the time period for which the data of the pollutant was available.  

Differences in the correlation can be seen according to seasons. Additionally, a delay can be 

found for some of the time series, resulting in higher correlations when calculating the correlation 

between the pollutant and the meteorological value of the following day. The influence of season 

and shift differs for the different locations. 

 

city  meteorological  NO2 PM10 

Graz Graz airport Graz/Sued Tiergartenweg 

Linz Hörsching Traun/Tischlerstraße 

Vienna Hohe Warte Hohe Warte Wien/Schafbergbad 



ACRP – Calls for Proposals 
 

Page 20 / 35 

 

Table 5: Spearman correlation between the time seri es of relative humidity/temperature and air 

pollutants (first value in column “correlation” and  “significance” for original data, second value 

for time series with removed annual cycle and trend ; statistically not significant correlations are 

marked with an “-“) 

city  
(pollutant) 

Investigation  
 period 

Correlatio
n (RH)  

Signifi -
cance  
(RH) 

Correlatio
n (T) 

 

Signifi -
cance  

(T) 
Graz (NO2) 20030425 - 20140531 -0.60/-0,01 0,1%/- 0.31/-0,05 0,1%/0,5% 

Vienna (NO2) 19880101 - 20140531 -0.30/0,07 0,1%/ 0,1% 0.22/0,07 0,1%/ 0,1% 
Linz (NO2) 19900101 - 20140531 -0.44/0,01 0,1%/ - 0.24/-0,05 0,1%/ 0,1% 

Graz (PM10) 20030425 - 20140531 -0.51/0,07 0,1%/ 0,1% 0.29/-0,04 0,1%/5% 
Vienna (PM10) 20020412 - 20140531 -0.26/-0,00 0,1%/- 0.15/0,08 0,1%/ 0,1% 

Linz (PM10) 20001212 - 20140531 -0.20/0,04 0,1%/0,5% 0.01/-0,13 -/ 0,1% 
 

The correlations between meteorological data and concentration of air pollutants do not include 

quite important processes that influence the air pollutants. In the case of PM10, the main 

influencing factors are distant sources of air pollutants and their advections by large-scale 

atmospheric conditions, or also neighbouring sources like construction sites or winter road 

gritting. Moreover, in this analysis no distinction between potential periods with and without 

temperature inversions was drawn. 

In the case of NO2, chemical reactions have an influence on the concentration of the pollutant 

as well as local influencing factors (e.g. road traffic, which might explain the period of small 

concentration around Christmas holidays) 

 

The second analysis was done for Dr. Meinhard Breiling of the Technical University of Vienna. 

His research is focused on the artificial snow production and therefore his interest lies in the 

climatological information on the conditions to produce snow. In this project, an analysis on 

monthly and seasonal (winter half-year: October to March) basis of vertical gradients of air 

temperature and relative humidity between stations pairs (Table 6) was done. 

To reduce the possibility of breaks in the high level station, for which no homogenised data is 

available, a common period (19970101-20081231) was chosen for all stations for which no 

relocations took place. 

 
Table 6: Information on 

stations used for 

vertical gradients 

 

Looking at the differences between high and low level stations, the medians for the months and 

season are, with the exception of January, negative for Rauris and Sonnblick, meaning that 

relative humidity is predominantly higher at high elevations. The lowest medians are exhibited 

in February and March. 

 

Low level station  Height [m]  High level station  Height [m]  

Graz university 366 Schöckl 1436 

Innsbruck university 578 Patscherkofel 2251 

Rauris 934 Sonnblick 3109 
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For temperature, as expected, values at higher stations are lower than at lower stations. 

Negative values occur only seldom and are small. As only two stations have been used for these 

analyses, no information about the height of inversions was available. As radio sounding data 

cannot be used easily as a comparison for daily means, no further attempts in this direction were 

made. The station pair Graz/Schöckl shows the highest percentage of positive temperature 

gradients (10% of the days). The height between these stations seems therefore to be not too 

far from the height of usual temperature inversions, as the effect was not counterbalanced by 

the usual temperature reduction by height. The most/strongest temperature inversions occur in 

December and January. 

As only the winter half year was analysed, no correction for annual cycle and trends have been 

done when calculating the correlations (Spearman) between temperature and relative humidity 

gradients.  

 

For the other two stakeholders (Dr. Thomas Bednar of the Technical University of Vienna, and 

Dr. Thomas Cech of the Federal forest research centre (BFW)), only data preparation was 

necessary, as both of them wanted to use the data not available for the public within their own 

software. 

In the case of Dr. Bednar, the topic of the investigation was the influence of daily Tmin and Tmax, 

relative humidity and global radiation on construction materials. The locations and periods of 

data provided are listed in Table 7.  

The topic of Dr. Cech is the dieback of ash trees in Austria and therefore correlation with relative 

humidity is of importance. The investigations focus on Lower Austria, as monitoring data of the 

dieback is available there for 2000 to 2006. Moreover, regional gradients from west to east 

should be analysed.  

 
Table 7: Stations and periods of data provided for Dr. Bednar 

station  Tmin, Tmax  RH radiation  

Vienna -Hohe Warte 19480101-20091231 18720101- 20141231 19600101-20141231 

Klagenfurt 19480101-20091231 19500401- 20141231 19690101-20141231 

Gmunden 19300101-20141231 19480101-20141231 19700101-20120214 

Feuerkogel 19300119-20141231 19300118-20141231 19700101-20141231 

 

Stations were chosen that were located as closely as possible to the BFW monitoring areas in 

a similar elevation distributed across Lower Austria from west to east. The chosen stations are 

listed in Table 8. All available data, starting at least in 1948 and reaching until 2014, was used.  

 
Table 8: Stations chosen for Dr. Cech 

station  Hohenau Krems Kremsmünster Schwechat Amstetten 

Monitoring site  Hohenau Rossatz Haag Göttlesbrunn Winklarn 
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� Additional analyses 

The trend is influenced by the homogenisation of all of the stations (Figure 8). All trends in this 

figure are calculated using all available data for the stations, therefore the differences in the 

trends are influenced by the time span that was available.  

Before homogenisation, more than 10 stations showed a positive trend, and after 

homogenisation only three stations (1500100, 177000 and 964000) show a positive trend signal. 

964000 is the only station for which the trend changed from a negative sign to a positive one by 

homogenisation. For all the other stations the trend became more negative. Nevertheless the 

slope is less than 0.2% per year. The biggest change took place for 1571200 (~0,3% per year). 

All trends are statistically significant in the homogenised dataset. Using a 95%-confidence 

interval the trend change is only statistically significant for 25 stations.  

Looking at the different seasons, the most positive trends occur in autumn and winter while 

nearly no positive trend can be found in spring and summer. The change to a positive trend for 

9640000 can be found in each season. For 4 other stations changes to positive sign can only 

be found in one to two seasons.  

Taking into account only those stations for which the time series starts in 1948, the homogenised 

and original trend can be seen in Figure 9. In the beginning of this homogenised time series an 

increasing or constant level of relative humidity can be found. Between 1970 and 1990 a 

decrease can be observed, afterwards a relatively constant value is reached again. The original 

time series start with a lower value of relative humidity. Therefore the decrease is smaller after 

1970, ending in a slight increase after 1980 and a constant value in the present. 

 
Figure 8: Information on annual 

trends of original and 

homogenised dataset. Station 

numbers given on the x-axis, the 

slope [% per year] on the y-axis. 

Black and grey points give 

original values, red and orange 

show the homogenised data. 

Grey and orange crossed circles 

give the 95%-confidence 

interval. The values give the 

original trend values. 

 

 

The annual cycle of relative humidity shows only slight changes (Figure 10). For all months, 

the median shows higher relative humidity in the homogenised data than in the original data. 

The difference is larger in the warmer months (May-July |median of differences|>3%) than in 

the cooler (Dec-Feb |medians of differences|<=2%) ones. 
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No height dependence seems to occur in the median and variability of relative humidity in the 

different months. 

 

Figure 9: Annual 

time series for 5 

stations (given on 

the lower part of 

the figure) starting 

1948 and trends. 

Slopes [% per 

year] and p-values 

for the slopes are 

given at the lower 

part of the figure. 

 
 

 

 

 
 

Figure 10: Annual cycle of relative 

humidity values for original (left) and 

homogenised (right) data 

 

 

 

 

 

 

 

A comparison between the monthly RH-data homogenised within the framework of HISTALP in 

1997 and the daily homogenised data from this project (averaged over the single months for 

equal resolution) was done for all 4 stations that are available in both datasets (Innsbruck 

University, Kremsmünster, Wien Hohe Warte, Graz University). The differences between the 

original data (CC-IMPATY minus HISTALP) have values between -7% and 5% (mean: -3%) due 

to different calculation of monthly means in both datasets (using daily means in CC-IMPATY 

and all observation-time measurements of the months for the HISTALP-data). Comparing the 

homogenised time series from the beginning of the available series until 2013 (using 

unhomogenised data before 1997 for HISTALP) showed that the differences have a range   of -

15% and 14% (Table 9)(mean: -4%). In most months, mean monthly humidity is higher in 
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HISTALP than in CC-IMPATY. Only in Kremsmünster did roughly half the months show means 

indicating that relative humidity is lower in HISTALP. No common seasonal cycle can be seen 

between the differences of HISTALP and CC-IMPATY in the different stations. When looking at 

trends for the single months, they are very similar for three of the stations having mean absolute 

errors of 0.05%/y. Only Graz University has differences of >=0.1%/y for each month. 

 

 
Table 9: Distribution of 

differences (CC-

IMPATY minus 

HISTALP, 

min/mean/max [%]) for 

each month (M1-M12) 

for homogenised 

monthly data 

 

 

 

2.3 Conclusions to be drawn from project results (max. 5 pages)  

Findings: 

Homogenisation methods: 

*) The tests using surrogate data showed that in break detection ACMANT and HOMOP 

performed best with fewer time series wrongly classified as homogeneous by ACMANT. 

*) The number of breaks was reduced significantly by human interaction with MASH in 

comparison to the automated version. That led to most wrongly as homogeneous classified 

time series in the deterministic case. In the realistic case the number of wrongly classified 

time series was similar to the automatic version. 

*) MASH and PROCLIM detect more breaks than ACMANT and HOMOP, although their 

characteristic to detect the breaks in each month separately was taken into account by 

summing up each break within 1 year as only 1 break. 

*) The location of the network (inner alpine, stations located nearby or farther from each other,…) 

seems of less importance to the break detection than the characteristic of missing data, 

noise,… 

*) All methods tested on their ability to recognise homogeneous time series found breaks in the 

homogeneous, deterministic surrogate dataset. Nevertheless, the number of breaks was 

significant (1 order) smaller than in the inhomogeneous cases. 

 Kremsmünster Wien Hohe Warte Innsbruck Uni Graz Uni 

M1 -6/-2/2 -5/-1/1 -8/-4/-1 -13/-6/-1 

M2 -5/-3/1 -12/-5/0 -9/-5/-2 -13/-7/-2 

M3 -6/-3/-1 -10/-5/-2 -11/-6/-4 -13/-8/-3 

M4 -10/-3/5 -15/-10/-2 -12/-6/-2 -14/-9/-4 

M5 -4/5/10 -10/-6/-2 -12/-5/0 -12/-5/-1 

M6 -4/6/14 -9/-3/-1 -11/-5/-2 -13/-5/0 

M7 -5/2/10 -10/-5/-2 -11/-5/1 -14/-5/-1 

M8 -8/-3/5 -10/-5/-2 -11/-5/-1 -14/-7/-1 

M9 -5/0/5 -5/-2/6 -9/-5/4 -12/-5/-1 

M10 -4/0/5 -6/-2/3 -8/-4/-2 -13/-7/-2 

M11 -5/-3/2 -9/-2/3 -7/-3/-1 -14/-6/-2 

M12 -4/-1/4 -5/-1/2 -7/-5/-2 -11/-5/-1 
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*) Almost all breaks in the surrogate networks  were located within 5 years of at least one break 

in the reference series and more than 2/3 of the breaks lay within 5 years of a break in the 

candidate time series itself. 

*) The probability of detection increases with increasing correlation of the candidate station and 

the reference stations and the size of the break signal in comparison to the noise. 

*) ACMANT was the method that provided solutions for the least number of stations.  

*) The network with the most problems was network 8, with only 4 stations.  

*) Of all the methods, only MASH solved all stations for all networks. 

*) In which networks some stations could not be solved depended on the methods and not on 

the network. 

*) In the realistic case, the quality control usually done by MASH could not be used due to “too 

few reference stations”. 

*) The RMSE can be improved in the deterministic case (by ACMANT, MASH and HOMOP in 

2/3 to 1/2 of the stations), but ACMANT is able to improve the time series (~1/2 of them) in 

the realistic case. 

*) The trend is improved by all methods for about 2/3 to 1/2 of the stations. The ability to improve 

the trend decreases in the realistic case, but still about ½ of the stations are positively 

influenced. 

*) There is nearly no influence in the performance of HOMOP with different correction methods, 

break detection criteria and length of reference period. 

*) The influence of human interaction in MASH is high. Profound induction training is therefore 

necessary to use this homogenisation tool and should not be done without knowledge of 

metadata. 

 

Homogenisation of real data: 

*) Daily relative humidity data of 34 Austrian stations has been homogenised. 

*) About half of the breaks can be explained by metadata. 

*) The positive effect of the correction of the time of observation bias was counter acted by the 

homogenisation due to the higher number of reference stations without this correction. 

 

Analyses: 

*) There seems to be no or only very little influence of relative humidity on pollutants like NO2 

and PM10. 

*) The homogenisation has an important influence on the trend of the relative humidity in the 

last years, by making the trend negative in most of the cases. 

*) While the median values of relative humidity in the different months increase, the annual cycle 

remains similar, with a minimum in April and May and the highest values  in winter. 

*) No height dependence seems to exist in the median of original and homogenised relative 

humidity values. 
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*) A comparison with monthly HISTALP-data showed that the differences between the two 

datasets increased by the homogenisation. 

*) Most mean monthly relative humidity values are higher in HISTALP than after the daily 

homogenisation. 

*) The consistency in trend analyses in individual months is varying. While some month at some 

station show absolute differences of 0.01%/year, other months at other stations can have 

differences up to 0.19%/y. 

 

Further steps by the project team: 

*) A comparison between the homogenised data of temperature and relative humidity would be 

needed to determine if those datasets homogenised with different methods can be used in 

combination. 

*) Further intercomparison between different homogenisation methods are needed for additional 

meteorological parameters. And additional methods (e.g. the Swiss method including 

weather patterns) are of interest. 

*) In case there are additional needs of the stakeholders concerning the analyses done in this 

project, the project team will of course offer the necessary support. 

*) The results on the trends should be further verified by a comparison to trends resulting from 

annual or monthly homogenised datasets. 

 

Important points for other target groups: 

*) The tests showed that the methods perform quite differently for the same conditions. The 

comparison of the methods is of interest to other homogenisation groups in the community. 

On the one hand, the improvement of methods can be a topic, on the other hand these tests 

showed that homogenising a new parameter needs profound preparatory work to find the 

best suited method. 

*) The analyses done with the stakeholders allow them to determine if this topic is fit for further 

research. 

*) The homogeneous data of relative humidity will be available to the public as soon as published 

and can therefore be used by everyone who is interested in relative humidity. 
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