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INTRODUCTION 
HISTORICAL DEVELOPMENT 

 
First ideas on the nature of earthquakes were expressed by Thales of Miletas of Greece (625 - 547 BC) 
who assumed the earth to float on water. Undulations of the water surface were claimed to be the cause 
of earthquakes. Seneca (4 BC - 65 AC) disagreed with Thales for he concluded, that - if Thales was 
correct - the earth would tremble all the time, and periods of quietness were more astonishing than 
continuous earth movements. Anaxagoras of Klazomenai (500 - 428 BC) assumed an ether protruding 
from the earth body as the cause of tremors. Anaximenes of Miletas (585 - 526 BC) claimed seasonal 
variations being responsible for quakes: dry and wet seasons cause earthquakes. Later, Demokrit of 
Abdera (460 - 371 BC) concentrated on wet seasons and suggested rainwater triggering earthquakes. 
One of the greatest philosophers, Aristotle (384 - 322 BC), assumed the escape of compressed air 
trapped in the earth's interior as the reason for earthquakes. Plinius (23 - 79 AC), author of the 'historia 
naturalis', considered earthquakes simply as underground thunder storms. Much later, in the 16th 
century, Georgius Agricola (1494 - 1555) thought earthquakes as a result of underground fires which 
are inflamed by the sun. An idea which reflects his knowledge of mining operations, where the 
principle of setting underground fire was used to mine ore deposits. The idea of underground fires was 
later pursued by Athanasius Kircher (1601 - 1680), and reappeared every now and then until the turn 
of the 19th century. In addition, many scientists believed earthquakes to be an expression of ongoing 
volcanism until 1900.  
 
However, in 1883 Grove K. Gilbert published a short article in the Salt Lake City Tribune stating:  
'the upthrust1 produces a local strain in the crust, involving a certain amount of compression and 
distortion, and this strain increases until it is sufficient to overcome the starting friction along the 
fractured surface. Suddenly, and almost instantaneously, there is an amount of motion sufficient to 
relieve the strain, and this is followed by a long period of quiet, during which the strain is gradually 
reimposed.' 
Gilbert carries on to recognize the intermittent nature of earthquake recurrences: 'The spot which is the 
focus of an earthquake ... is therefore exempt [from a recurrence] for a long time, and conversely, any 
locality on the fault line of a large mountain range which has been exempt from earthquakes for a long 
time, is by so much nearer to the date of recurrence.' 
 
Concrete concepts of seismic sources appeared only in the early 20th century, when the theory of wave 
propagation (e.g. Poisson, Rayleigh) was established and seismic instruments (e.g. Milne, Wiechert) 
became available. 

 
1 Gilbert is referring to the block-mountain formation in the Great Basin 
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Year Name Remarks 

1910 Harry Fielding Reid 'Strain rebound concept': strain accumulation 
near faults - release of the strain = earthquake, 
based on displacement measurements after the 
1906 San Francisco earthquake. Estimated 
energy release. 

1920/24 A.A. Griffith energy balance of a propagating crack, based 
on the theorem of minimum energy.  

1959 Leon Knopoff & Freeman 
Gilbert 

step source time function 

1959 Vladimir I. Keilis-Borok stress drop from moment and source radius 

1964 Norman A. Haskell 'Haskell model', ramp source time function, 
amplitude spectrum flat at low frequencies 

1967 Keiiti Aki characteristic frequency. Renamed to 'corner 
frequency' in 1971 by Wyss, Hanks & 
Liebermann 

1970 James N. Brune 'Brune model', smoothed ramp source time 
function,  instantaneous radial slip 

1970 Freeman Gilbert moment tensor, forward modelling 

1973 Freeman Gilbert moment tensor inversion 

1977 Shamita Das & Keiiti Aki barrier-model 

1978 James D. Byerlee 'Friction law': shear stress = 0,85 * normal 
stress for normal stresses < 200 MPa 

1978 S. Hartzell, F. Wu empirical Green functions 

1979 Keiiti Aki asperities and barriers 

1981 Adam Dziewonski centroid moment tensor 

1990 Thomas H. Heaton self-healing phase (actually Madariaga 
introduced the term 'healing' already in 1976) 

 
Suggested literature:  
An Introduction to Seismological Research - History and Development, by Benjamin F. Howell Jr., 
Cambridge University Press, 1990. 



NEAR AND FAR-FIELD 
 
For the purpose of discussing the difference between the near- and the far-field terms of the 
displacement field, we consider a simple point source (explosion).  
 

 
lw0801 

 
The equation of motion is given by a one-dimensional wave equation: 
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with ‘F(t)’ = force function (reduced displacement potential, unit ‘m³’) applied at the elastic radius ‘re’, 
and ‘r’ being the distance from the elastic radius, and ‘vp’= velocity of the compressional wave. The 
displacement potential (unit ‘m²’) has then the form 
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with pvrt /−=τ as the ‘retarded’ time. Only after ‘τ’ turned positive (at the time of the arrival of 
the wave), the surrounding medium is affected.  
 
 
 

 
The first term decays with 1/r² and is called the near-field term. 

 
The second term decays with 1/r and is called the far-field term. 
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The force-term ‘F’ describes the “strength” of the source, the time history of ‘F(t)’ is related to the 
seismic moment via 

)(4)( 2 tFvtM pπρ−=  

Hence, the far-field term of the displacement represents the time derivative of the history of the 
moment .  )(tM&
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Far-field P- and S-wave displacement amplitudes are proportional to , the time derivative of the 
seismic moment function . ‘G’ = shear modulus, ‘A’ = area, ‘D’ = displacement. 

Simple step and ramp moment functions would generate far-field impulses or boxcar ground motions.  

)(tM&
)()()( tDtGAtM =

 
 

near field r (distance) << λ (wavelength) )()( tMtu ≅  

far field r (distance) >> λ (wavelength) )()( tMtu &≅  
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SOURCE PARAMETERS 
 

Depending on the resolution of the measurement equipment, different kinds of seismic sources can be 
distinguished: 

 

 type example 

1. shear slip tectonic 'earthquake' 

2. tensile failure roof collapse in mines, karst 

3. explosion volcanic, blast, nuclear test 

4. implosions phase transition in deep subduction events 

5. impact meteorite, bomb 

6. short duration 'noise' aeroplanes travelling at super sonic speed 

7. ambient noise microseisms due to remote weather conditions 

 
All of these sources can be represented by a combination of forces. Many of the failure processes can 

be modelled in laboratory tests. 
 
 
 

The following source parameters are important for describing the source: 
 

1. focal time 

2. location 

3. magnitude 

4. seismic energy 

5. seismic moment 

6. stress drop 

7. source time function 

8. source spectrum 
 

Note: Moment tensor inversions, rise time, duration of the source pulse and seismic efficiencies add to 
the knowledge about the source. In case of tectonic earthquakes, the extent of the source, the fault 
orientation, slip vectors, rupture velocities and spatial stress drops should be considered, too. 

 



FOCAL TIME 
 
 
Kiyoo Wadati2 discovered deep focus earthquakes near Japan by using arrival times of seismic waves 
at several stations. The method is also useful when estimating the focal time ‘t0’ of shallow seismic 
sources, and is based on a diagram in which P-arrivals ‘tp’ are plotted against the time difference 
between S- and P-arrivals ‘ts-tp’of several stations. 
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distance Δ (km) tp (s) ts-tp (s) 

10 44,17 1,23 
40 49,17 4,95 
45 50,00 5,56 
70 54,17 8,63 
90 57,50 11,10 

100 59,17 12,24 

 
The focal time ‘t0’ is finally given by e.g. 
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Hence, spatial changes of velocities (strong gradients, caustics) may have an effect on the correct 
determination of the focal time. Note, that there are other methods to determine the focal time, too. 
Locating earthquakes usually involves also determining the focal time as a by-product. Errors in phase 
pickings are mainly compensated in a wrong depth and an erratic focal time during the location 
procedure. 
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LOCATION 
 

 
General: Best solution is given by the global minimum of residuals. 

 
 
 
Geiger-Method (1912) 
  
Classic approach. Sum of squared time-residuals r ('misfit function') has to become a minimum. 
 
Bayesian Approach 
 
Location algorithm is extremely efficient. Assumption: Time residuals are Gaussian distributed. 
Hypocentre must be close to mine workings. 
 
Location with Approximate Velocity Models 
 
Generalization of the Least-Square Procedure. Assumption: Velocity model consists of random 
variables. Their deviations from an average model are Gaussian distributed. 
 
Relative Location Technique (ATD = arrival time difference) 
 
All P-wave-arrivals of particular event are related to a reference event. The difference of arrival-times 
is minimized by adjusting the coordinates and focal time of the master event. 
  
Simultaneous Hypocenter and Velocity Determination 
 
Simultaneous location of a group of seismic events and the velocity model. Follows ATD-technique. 
Known as Simultaneous structure and hypocenter (SSH) determination or Joint determination of 
hypocentres (JHD). The method does not require calibration blasts, is fast and can be run on small 
computers. 
 
Other Location Methods 
 
Linear Methods 

Fast and free from iterative problems. Requires constant velocity-model.  
 
Large Time Residuals and L1 Norm 

Takes account of arrival time-residuals, which are not Gaussian distributed.  
 
Nelder-Mead Simplex Procedure 

Relatively slow, but avoids calculation of derivatives (which can be very small, thus leading to ill-
conditioned matrices).  
 
 



MAGNITUDE 
  
 
 

LOCAL MAGNITUDE 
 
Several magnitude scales are in use. The first ‘scale’ was introduced by Charles Francis Richter3 in the 
early 1930s. He compared amplitudes of ground displacements which were recorded with a Wood-
Anderson torsion seismometer (free period 0,8”, high frequency magnification 2800). He calculated 
the ‘size’ or ‘strength’ of a seismic event by relating it to a ‘master event’ at a distance of 100 km 
which appeared on a Wood-Anderson seismograph with an amplitude of 1 mm. Such an event was 
addressed as an earthquake having a local magnitude of ‘0’. Local magnitudes are also referred to as 
‘Richter’-magnitudes. The original relation is: 
 

)log()log( 0AAml −=  
 

with ‘A0’-values being tabulated for several distances in Richter (1958)4 to ease calculations. Taking 
into account the involved reference distance of 100 km, one may also rewrite the above equation as 
 

)log(76.248.2)log( Δ+−= Aml  
 

This formula is still applicable when considering a Wood-Anderson seismometer response. Other 
forms of this formula involve other constants to cater for different crustal models, instruments, kinds 
of input signals, etc. Local magnitudes are derived from shear wave amplitudes having a period below 
1 second which is very useful because buildings exhibit similar periods. 
 
 

BODY WAVE MAGNITUDE 
 
At larger distances short period measurements become more and more meaningless. Therefore, 
amplitudes recorded from direct P-waves are used to determine the so-called body wave magnitude: 
 

),()/log( Δ+= hQTAmb  
 

with ‘A’ being the actual ground-motion amplitude in micrometers, and ‘T’ being the period in 
seconds. ‘Q’ represents a correction term for focal depth ‘h’ (km) and distance ‘ ’ (°). ‘Q’ ranges 
between 0 and 4.25. The magnitude is usually determined from signals having a 

Δ
period around 1 

second. These magnitudes tend to scatter a lot, usually in the order of +-0,3 for individual stations. If 
very long-period waves – say 5 – 15 seconds –  are used, the magnitude is then referred to as ‘mB’. 
 
 

                                                 
3 Richter, C.F. 1935. An instrumental earthquake magnitude scale. Bull.Seism.Soc.Am., Vol.25, 1-32. 
4 Richter, C.F. 1958. Elementary Seismology. Freeman & Company, San Francisco, 768 pp. 
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SURFACE WAVE MAGNITUDE 
 
At much larger distances (> 600 km) long-period seismometers are used for magnitude determinations 
of shallow earthquakes.  
 

kAM S +Δ+= )log(66.1)log( 20  
 
‘A20’ represents the amplitude in micrometers at a period of 20 seconds, and ‘k’ is a constant (= 2.0, if 
the period is 20 seconds, and the distance is given in degrees). In Austria we use  
Ms = log(V) + 1.66log(Δ) + 0.52 - log(T), with V = half peak2peak amplitude in nm/s, Δ = distance in 
degrees, T = period in seconds. 

 
DURATION MAGNITUDE 

 
Another way to establish the ‘size’ on an earthquake from the duration of the recorded earthquake. 
Usually used, when amplitudes cannot be ascertained. Often, the duration ‘TD’ is defined between 5% 
above noise and the time when the signal resumes the same level. The magnitude is then estimated by 
using e.g. 
 

21 )log()log( kkTM DD +Δ+=  
 
with ‘k1’ and ‘k2’ as local constants. 
 

MOMENT MAGNITUDE 
 
The moment magnitude was introduced by Hanks & Kanamori (1979)5. This magnitude is 
independent of the frequency of the signal. The magnitude is denoted as ‘MW’ and implies a constant 
stress drop of 10-4 of the shear modulus, which is reasonable for tectonic earthquakes: 
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where ‘M0’ represents the seismic moment (Nm). The latter is determined from the spectrum of ground 
displacement.  

Why constant stress drop? 
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MACROSEISMIC MAGNITUDE 
 
The macroseismic magnitude was used mainly in Europe after the introduction of the magnitude by 
Richter in California. The macroseismic magnitude is based on epicentral intensities. After the focal 
depth had been established from the decay of intensities with distance, the epicentral intensity ‘I0’ and 
the focal depth are used to estimate a magnitude. A common relation is (Shebalin, 1958)6: 

2)log(
3
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2

0 −+= zIM m  

The focal depth can be estimated from the decay of intensities according to (Sponheuer, 1960)7
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with ‘α’ being the coefficient of absorption which usually varies between 0.001 and 0.01. In Austria 
‘α’ amounts to 0.002, but varies a lot. 
 
 

COMPARISON OF MAGNITUDES 
 

Type of magnitude Applicable frequency Range 

Local magnitude ml > 1 Hz <5 

Body wave magnitude mb 1 Hz <6 

Surface wave magnitude MS 0.05 Hz <8 

Duration magnitude MD - - 

Moment magnitude Mw Unlimited Unlimited 

Macroseismic magnitude Mm - - 

 
Note:  

1. ml is often hampered by local inhomogeneities and radiation pattern effects 
2. mb is quicker to determine but less accurate 
3. MS is often only a rough estimate because signals with a period of 20 seconds are not standard  
4. MD is the least accurate magnitude 
5. The use of first capitals is not consistent. Hence, one may find ‘mb’ and ‘Mb’, and the like 
6. There are other magnitudes in use, too – such as the ’Nuttli’-magnitude in Canada, or the 

energy-magnitude by Berckhemer & Purcaru 
Within applicable frequency bands the magnitudes should not differ much. Problems may occur with 
recordings of limited bandwidth. 
 

                                                 
6Shebalin, N. 1958. Correlation between earthquake magnitude and intensity. Studia geophys. et geod. 2, 86-87. 
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Akademie-Verlag Berlin. 



SEISMIC ENERGY 
 
Only a fraction of the total strain energy ‘ET’ released during an earthquake is emitted as seismic 
energy ‘ES’. The other part of the energy is released as heat ‘EH’ or is absorbed by non-elastic 
processes. The strain energy released by a crack of length ‘L’ is  

DALGDEEE HST σγπ ==+= 2
 

with ’γ’ as constant depending on the fault geometry and stress drop, ‘D’ is the maximum fault slip, 
and ‘σ  ‘ = average shear stress (before and after the earthquake) (Starr, 1928 in Bullen & Bolt, 19858) 

The seismic energy is given by
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with ‘η’ as ‘seismic efficiency’, which theoretically may vary between ‘0’ (= mainly heat is emitted by 
the source, or non-elastic processes dominate) and ‘1’ (all strain energy is converted into seismic 
energy), but ranges mostly between 0.1 and 0.01, thus depending strongly on the kind of the source. 
 
The seismic energy itself can be estimated from seismic recordings by using the decrease in energy per 
unit area on the wave front, normally referred to as ‘geometrical spreading’. The energy at a particular 
station at distance ‘Δ’ (in degrees) is given by 
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with ‘r0‘ = radius of the earth, ‘ih’= take off angle at the source, ‘i0’= angle of incidence at receiver, ‘ρ’ 
= density, ‘vS’ = shear wave velocity at point of observation, ‘ 2)(ωu ’ = power spectrum of ground 
displacement at station. In this case, source related radiation effects and absorption are ignored. The 
formulae still yields useful estimates of seismic energies. 
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SEISMIC MOMENT 
 
A moment of a force system is the vector product of the force with the position vector of the point of 
application. Two parallel forces form a couple with a definite moment. 
In 1958 Steketee proved the fundamental equivalence theorem: A displacement field produced by 
the dislocation ‘Δu’ on a plane element ‘δS’ in an elastic body equals that produced by a double 
couple applied at ‘δS’. 
Considering a shear dislocation ‘Δu1‘ (in x1-direction) at the element ‘δS’ (perpendicular to x2-axis) of 
length ‘2c’ (x1-axis) and thickness ‘2ε’ (x2-axis), the moment per unit length in x3-direction due to the 
forces (actually accelerations) in x2-direction are given by the integration over ‘ε’ and ‘c’.9
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Integration over the whole plane (x3-axis) leads finally to the scalar moment (let ) 0,0 →∂→ Sε

  

MO = GAD 
 
with ’G’ being the shear modulus, ‘A’ the fault surface and ‘D’ the average displacement. 
The moment can be estimated from the spectral displacement amplitude ‘Ω0’ of recorded seismic 
waves below the corner frequency from (R = distance, vS = shear wave velocity) at a specific station  
 

MO = 4πρvS³RΩ0 

and the complete moment tensor is reconstructed from numerous observations at different azimuths 
and distance ranges giving an idea of the source mechanism (type, orientation, ‘strength’ = M0). 

                                                 

Lenhardt 13 Seismic Sources 
9 See Bullen, K.E. & B.A. Bolt 1985, p. 424. 



MOMENT TENSOR 
 
In 1970 Gilbert introduced the moment tensor for the first time to calculate the displacement at the free 
surface. The latter is given by the product of moment tensor elements times the corresponding Green's 
function. The elastodynamic Green's function is a tensor describing the impulse response - a 
displacement field (tensor) - due to a unit impulse (Dirac pulse) of the medium between source and 
receiver. Green's functions differ spatially due the inhomogeneity of the Earth. 
 
Moment tensors can be determined from 
 

1. free oscillations of the earth 
2. long-period surface waves 
3. long-period body waves 

 
 

The moment tensor is a general concept, describing a variety of seismic source models.10

 
 
The moment tensor is given by 
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with ‘Di’ = slip vector, and ‘vi’= direction of fault normal. 
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10 Jost, M.L. & Herrmann, R.B. 1989. A student's guide to and review of moment tensors. Seismological Research Letters, 
Vol. 60, No.2, 37-57. 
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Characteristics of the moment tensor: 
 

1. The symmetric moment tensor ’Mij’ depends on the seismic source orientation (e.g. fault) and 
strength.  

2. The three diagonal elements represent vector dipoles. The six off-diagonal elements represent 
force couples. 

3. The sum of the eigenvalues denotes the volume change in the source, the ‘isotropic part’ (‘IP’).  
4. A positive sum indicates an ‘explosion’ (e.g. nuclear test), a negative sum an ‘implosion’ (e.g. 

due to phase transitions).  
5. If one eigenvalue vanishes, the deviatoric moment tensor represents a pure ‘double couple’ 

(‘DC’).  
6. If none of the  eigenvalue vanishes and their sum is still zero, the tensor can be decomposed 

into a major and a minor double couple – or into a double couple and a compensated linear 
vector dipole (‘CLVD’). The latter is a dipole that is corrected for the effect of volume change 
(e.g. pillar failure in an underground mine).  

 
The moment tensor can be decomposed in several ways: 
 

1. IP + 3 vector dipoles (= asymmetric change in volume) 
2. IP + 3 DC  
3. IP + 3 CLVD 
4. IP + major DC + minor DC 
5. IP + DC + CLVD 

 
 
In particular, the last option is frequently used to study the nature of seismic sources. It allows to 
separate the moment tensor into an isotropic part (IP), a double couple (DC) and a compensated 
linear vector dipole (CLVD). 
 
For the deviatoric eigenvalues M1 ≥ M2 ≥ M3 we compute ε = -M2 / M3, and then we get 
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Isotropic part (IP) 
 
 
 
Double Couple (DC) 
 
 
 
Compensated Linear Vector Dipol (CLVD) 
 
 
 

with tr(M) being the trace of the diagonalized moment tensor ‘M’, and ‘ε’ is a measure of the size of 
the ‘CLVD’ component when compared with the ‘DC’ and the isotropic part ‘IP’.   
Note: ‘ε’ = 0 for a pure double couple (DC), and 0.5 for a pure CLVD. 
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STRESS DROP 
 
Changes of the stress tensor in the earth crust may lead to earthquakes. Only a portion of these stresses 
are released during earthquakes, however. These stresses can be a result of 
 

1. stress build up due to tectonic forces  
2. uplifts 
3. changes of the orientation of principal stresses 
4. pore water pressure changes 
5. impacts 
6. intrusions 

 
Definition of the stress drop:  

Difference in stress between initial shear stress 1σ  and final shear stress 2σ 11. 

 
lw0925 

‘A’ = estimated area of fault surface in km². ‘Mo’ = seismic moment in dyne-cm (subtract 7 from log(Mo) to convert to 
‘Nm’). 

Usually,  stress drops do not vary much and show only little scatter. Inter-plate earthquakes – along 
subduction zones – cluster around 3 MPa (30 bars), whereas intra-plate events – collisions inside of 
plates – tend to slightly higher stress drops of 10 MPa (100 bars).  
(Figure modified from Kanamori & Anderson, 1975, in Lay & Wallace, 1995) 
Suggested literature: 

Brune, J. 1970, 1971. Tectonic stress and the spectra of seismic shear waves from earthquakes. J.Geophys.Res. 75, 1970, 
4997-5009 (correction in J.Geophys.Res. 76, 1971, 5002). 

Boatwright, 1980. A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress 
drop, and radiated seismic energy. Bull.Seism.Soc.Am., Vol.70, 1-27.  

Hanks, T.C. & McGuire, R. 1981. The character of high frequency strong ground motion. Bull.Seism.Soc.Am., Vol.71, 
2071-2096. 

Wyss, M. & Brune, J., 1968. Seismic moment, stress and source dimensions for earthquakes in the California-Nevada 
region. J.Geophys.Res., Vol.73, 24-42. 
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We distinguish the following stress drops: 
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The apparent stress (Wyss & Brune, 1968) is proportional to the dynamic stress drop, but does not 
represent an actual stress drop, for 
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Note, that each earthquake alters the orientation of principal stresses along the fault due to the 
reduction of shear stresses along the fault plane during the earthquake. 
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SOURCE TIME FUNCTION 
 
 
The source time function ‘s(t)’ is needed for waveform modelling and moment tensor inversions. 
Therefore, the function is found in the complete description of the far-field displacement time series 
u(t)  
 

u t s t g t i t( ) ( )* ( )* ( )=  
 

with s(t) as the source time function, g(t) is the propagation filter, and i(t) is the transfer function of 
both, the seismometer and the data acquisition system. 

 
Generally, the source time function is defined as 
 

s t B b tj
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with b(t-τj) = length of the boxcar of width Δτ, and Bj being the height of each element of Δτ and mi 
represents the elements of the moment tensor. The duration of the source time function is given by 
NΔτ. 

 
There are two alternatives for parameterizing arbitrarily shaped source functions (rectangle and 
triangle): 

 

 
lw1006 
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RADIATION PATTERN 
 
The far-field radiation pattern alters the amplitude (displacement) of recorded signal in radial and two 
tangential directions as seen from the source12. 
 
The displacement vector is given by 
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and with ‘λ’ and ‘G’ being Lame’s constants (if λ = G then Γ = 
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The example below shows the pattern of a double couple in the x1x2-plane, where the above formulae 
(θ = angle from +x3 = π/2, φ = azimuth measured from +x2) reduces to 
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The concept: 
 
The displacement field due to a 
shear dislocation equals the  
displacement field due to a 
distribution of equivalent double 
couples that are placed in a medium 
without any dislocation. 
 
 
 
 
 
Note: The first onset direction of P-
wave arrivals can be utilized to 
determine the orientation of the 
involved fault plane together with the 
sense of movement. 

 

  
                                                 
12 Definition of the coordinate system: +x1 points East, +x2 points North and +x3 points upwards. 



DIRECTIVITY 
 
Seismic records reflect the position of a seismic station relative to the seismic source due to 
 

1. radiation pattern   
2. the fault length 
3. rupture velocity 

 
Since the rupture velocity is smaller than the propagation velocity of shear waves, body waves 
generated by movement of an additional segment of a fault will arrive earlier than body waves, which 
are generated later during the rupturing process. The time difference of subsequent arrivals of waves 
depends on the azimuth between source and receiver.  
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The travel time of a body wave with velocity ‘c’ from the origin at the fault and a station is  
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The arrival time difference ‘τc’ from waves originating from the beginning and from the end of the 
fault (apparent rupture duration) define the shape of the recorded ground motion.  

c
L

v
L

c
r

c
Lr

v
L

rr
c

θθτ cos)cos(
−=⎟

⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡ −
+=  

 
 

 
Azimuthal variability of 
signals (apparent source time 
functions) for a rupturing 
fault as observed in the far-
field. The rupture duration 
and the amplitude changes, 
depending on the azimuth. 
The seismic moment, which 
is represented by the time-
integral of the source time 
function (‘Area’), does not 
change, however. 

 
lw0909
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SOURCE SPECTRUM 
 
 
The source time function for faulting mechanisms can be represented as a convolution of the 
 

• particle dislocation history (rise time)  ‘ ’ (the time it takes for a particle to achieve its final 
displacment), and the 

rτ

• the duration of the faulting process (rupture duration) ‘ ’ cτ
 
Both time histories can be modelled in the far-field by boxcar functions ‘B’. Hence, the far-field 
ground displacement ‘u(t)’ is given by the convolution of both boxcar functions: 

);(*);()( cr tBtBtu ττ≈  

with ‘M0’ = scalar seismic moment. 
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Since the Fourier transform of a boxcar functions is given by 
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the convolution of two boxcar functions leads due to the multiplication in the frequency domain to 
displacement spectrum 

2/
)2/sin(

2/
)2/sin()(

c

c

r

ru
ωτ
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The plateau of that spectrum is defined by amplitudes at frequencies less than 2/τr. The spectrum then 
decays according to 1/ω. The crossover frequency between the plateau and the 1/ω² decay is called the  

 
‘corner frequency’. 

 
Hence, if a corrected spectrum (absorption!) just decays with ‘1/ω’, the ground displacement in the 
far-field can be represented by a single boxcar function. This would mean, that either the rise time or 
the rupture duration is zero. Hence, either the particle velocity or the rupture velocity must be infinite 
– or the recording instrument did not cover the needed frequency range up to very high frequencies, 
where the ’1/ω²’ decay in the amplitude spectrum could have been observed. 
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Spectra of a single boxcar (a) and of a trapezoid (= two convolved boxcars). 
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 MODELS 
 

REID 
 
The horizontal deformation in the vicinity of the San Andreas fault due to the disastrous San Francisco 
earthquake in 1906 exhibited a simple symmetry that led Harry Fielding Reid13 to formulate the 
elastic rebound theory of earthquakes. The theory states, that strain accumulates prior to an 
earthquake. The actual earthquake is a result of strain release during the elastic rebound. 
 

 
lw0104 

 
Observed displacements due to San Francisco earthquake (a) and process of strain accumulation in the 

vicinity of a fault (b). 

 

 
Principal of survey results. 
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13 Reid, H.F. 1910. The Mechanics of the Earthquake. In ‘The California Earthquake of April 18, 1906, Report of the State 
Investigation Commission‘.Vol.2, Washington D.C.  Carnegie Institution, pp. 1-192. 



HASKELL 
 
When considering a seismic source as a constantly moving dislocation of adjacent blocks and 
assuming 
 

1. constant rupture velocity ‘vr’ and a 
2. rectangular source shape (area = length x width) 
3. ramp source time function 
4. final displacement 

 
we speak of a 'Haskell' model14. Assuming ‘x’ is orientated parallel to the strike of the fault, the 
displacement at ‘x’ 
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with ‘ ’ represents the final displacement (=half the fault slip ‘D’), and ‘G’ is the ‘ramp function’. ∞u
 
The far-field displacement of this simple line source for P- and S-waves - that is beyond several wave 
lengths - is trapezoidal shaped (symmetric ramp source time function). The latter is an effect of a 
convolution of two boxcar functions (s.a. Lay & Wallace, 1995, p.367)  which depends on 
 

1. the displacement history of a single particle along   
the line source (rise time), and 

2. the finiteness of the source (rupture duration) 
 
 
The radial component (P-wave) of the far-field displacement of a double couple source is described 
by: 
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with RP = radiation pattern of P-wave, ρ = density, vP = P-wave velocity and  = moment rate. 
Adding up all ‘N’ subevents at distance ‘r

M&
i’ and considering their time-lags ‘Δti’ leads to  

 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Δ−−= ∑

=
i

P
i

N

i
i t

v

rtrutru ,
1

,  

 
Because, and , with w = width, we may rewrite the formulae as  )()( tDGAtM ii

&& = wdxAi =
 
 

( ) ( )dxtt
r
D

w
v
GR

tru i

N

i i

i

P

P
i

r Δ−= ∑
=1

34
,

&

πρ  

 
                                                 

Lenhardt 24 Seismic Sources 

14 Haskell, N.A. 1964. Total energy and energy spectra density of elastic waves from propagating faults. 
Bull.Seism.Soc.Am., Vol.54, 1811-1841. 
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At larger distances perpendicular to the fault ‘RP‘ and ‘ri‘ are approximately constant. If a constant 
rupture velocity ‘vr’ is assumed, the displacement history on the fault is everywhere the same. Then  

, with ‘x’= fault length. Using the shift property we may rewrite the velocity time history as ri vxt /=Δ
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hence, the particle velocity is everywhere the same. Because the velocity ‘ ’ is independent of ’x’, it 
can be taken outside of the integral, 
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Integrating the delta (Dirac) function requires substituting ‘z = t – (x/vr)’,  ‘x = t vr – z vr‘ and  
‘dx = (dx/dz)dz = -vr dz’ and considering the identity 
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The integral of ( )zδ  is the Heaviside step function ‘H(t)’ which is ‘0’ before the arrival ‘t = x/vr’ of 
the wave and ‘1’ for  ‘t>0’. 
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with 'B' being a boxcar of duration 'x/vr’. Calculating the ‘area’ under the far-field P-wave pulse for 
arriving at the seismic moment, we have to integrate over the time:  
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The left-hand side is the area under the displacement pulse corrected for spreading, radiation pattern 
and material constants. The right-hand side equals the seismic moment (GAD), with G = shear 
modulus, A = , and D = the integral of over time. Note, that the convolution of )/,( rr vxtBwvwl = )(tD&
‘B’ and ‘ ’ result in a trapezoid signal in the far-field. )(tD&
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BRUNE 
 
 
General: 
 
The model of Brune15 considers simultaneous slip along the fault (x-axis), that initiates a shear wave 
propagating perpendicular to the fault surface (y-axis). It is assumed, that a tangential stress step is 
applied to the interior of a fault plane, causing both sides of the blocks to move in opposite directions. 
 
The shear stress in excess of the dynamic friction shear stress at a point along the ‘y-axis’ is 

)/(),( Seff vytHty −= σσ  

where ‘H(t)’ is the Heaviside function, ‘vS’ = shear wave velocity, and ‘ eff ’ is the effective shear 
stress (actual shear stress minus dynamic shear stress level due to friction). Because 
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Along the fault (‘y’ = 0, and ‘t’ small), the displacement increases linearly (du/dt = constant) in time. 

 

s
eff

s
eff

v
G
σ

tu

tv
G
σ

tu

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

)(

)(

&
 

 
 
The spectrum of the displacement observed along the fault is therefore  
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15 Brune, J. 1970, 1971. Tectonic stress and the spectra of seismic shear waves from earthquakes. J.Geophys.Res. 75, 
1970, 4997-5009 (correction in J.Geophys.Res. 76, 1971, 5002). 



Brune’s approach: 
 
Once the effects of the edges of the fault plane are recognized at the point of observation, the particle 
velocity will decrease and approach zero at times larger compared to the distance ‘r’ to edge divided 
by the shear velocity. Therefore, Brune introduced a time constant equivalent to the travel time of the 
shear wave τ = r/vS, so that 
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This change takes care of the near-field effect of the finite dislocation size. The corresponding Fourier 
transform yields 
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where ‘ωC =1/τ = 2πfC’, with ‘fC’ as the corner frequency of the displacement spectrum.  
 
Further conclusions were drawn by Brune when he considered Keilis-Borok’s work (1959)16. Thus, 
the seismic moment ‘M0’ is related to the third power of the source radius ‘r’: 
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if the drop of the effective shear stress is 100%. The source radius can be estimated from the spectrum 
via the corner frequency ‘fc’ (of the shear wave propagating with ‘vs’):  
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Note, that the constant factor ‘2.34’ applies only to a circular source, which can be described by the 
radius ‘r’.  
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16 Keilis-Borok, V.I. 1959. On estimation of the displacement in an earthquake source and of source dimensions. Ann. 
Geofis. 12, 205-214. 



Considering the following parameters 
 

 Density ρ (kg/m³) Shear modulus G (GPa) Shear wave velocity vS (m/s) 

Hard rock 2700 37 3700 

Soft rock 1800 7.2 2000 

 
 
Mendecki (1997)17 summarized the most important parameters of the Brune’s model: 
 
 

 
m0101 

 
 
 
Note, that the moment magnitude is estimated from Hanks & Kanamori’s ‘MW = 0.67 log(M0) – 6.1’, 
thus it is independent of the shear stress drop in the diagram shown above. 
 

                                                 
17 Mendecki, A.J. 1997. Seismic Monitoring in Mines. Chapman & Hall. 
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The picture below illustrates source displacements and far field peak velocities, is also taken from 
Mendecki (1997)18. Note again, that the moment magnitude is estimated from Hanks & Kanamori’s  
‘MW = 0.67 log(M0) – 6.1’, thus it is independent of the shear stress drop in the diagram shown below. 
 
 
 

 
m0102 

 
 
 
 
 
 
 

                                                 
18 Mendecki, A.J. 1997. Seismic Monitoring in Mines. Chapman & Hall. 
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COMPARISON OF MODELS 
 
 
All three models differ in their source time function. The top four traces show the respective 
displacement functions  
 

1. instant displacement regardless of rupture length (‘Reid’) 
2. linear growing displacement  
3. smoothly growing displacement (‘Haskell’) 
4. displacement starting suddenly and slowing down (‘Brune’) 

 
The bottom four traces show the respective time-derivatives of the source time functions, as if the 
displacement would be recorded in the far field (equivalent to the derivative of the seismic moment).  
 
 
 

 
 
Note, that the spectra decay differently, depending on the type of the source time function and their 
respective time-derivative: 
 
 
Spectrum of time-derivatives:  
 
Type 

1. does not decay at all 
2. first no decay, then decays with ω above the corner frequency 
3. first no decay, then decays with ω² above the corner frequency 
4. first no decay, then decays with ω and finally with ω² 
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SOURCES OF ERRORS 
 
 
LOCATION 
 

Due to local travel time delays or wrong onset pickings, the location of seismic events can be severely 
hampered.  Wrong locations lead to wrong magnitudes, moment tensors, fault plane solutions, etc. 
As an example see also Wong, I.G. & McGarr, A. 1990. Implosional failure in mining-induced seismicity: A critical 
review. 2nd Int. Symposium on 'Rockburst and Seismicity in Mines', Balkema, 45-52. 

 

 
BANDWIDTH 
 
If the frequency content of seismic signals exceeds the bandwidth of the recordings, serious 
underestimations of the seismic moment occur. Consequently, moment tensor inversions lead to wrong 
mechanisms.  
See Di Bona, M. & Rovelli, A. 1988. Effects of the bandwidth limitation on stress drops estimated from integrals of the 
ground motion. Bull.Seism.Soc.Am., Vol.78, 1818 -1825. 

 

 
FOCAL SPHERE COVERAGE 
 
The focal sphere is usually not equally covered with stations thus the statistical significance of focal 
solutions is a) different for each event and b) often insufficient. 
 
 
WAVEFORM MODELLING 
 
Empirical Green Functions are subject to local variations and may lead to wrong moment tensors. 
 
 
STATION CORRECTIONS 
 
Time delays and waveform distortions due to absorption may result in wrong locations and wrong 
energy estimates, thus resulting in wrong magnitudes… 
 
 
INVERSION OF SCALING LAWS 
 
Generally speaking, scaling laws should not be ‘inverted’. The constants in Y = a + b*X are usually 
not comparable with X = c + d*Y with c = -a/b and d = 1 /b. 
 
As an example see also Wells, D.L. & Coppersmith, K.J. 1994. New empirical relationships among magnitude, rupture 
length, rupture width, rupture area and surface displacement. Bull.Seism.Soc.Am., Vol.84, No.4, 974-1002. 
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