
RESTITUTION OF GROUND MOTIONS 
THE SEISMOMETER 2 

COMPARISON 4 
DAMPING 5 
CALIBRATION 6 

FREQUENCY RESPONSE FUNCTION 7 

THE ELECTRODYNAMIC SYSTEM 8 
SYSTEM THEORY 9 

TRANSFER FUNCTION 11 

FREQUENCY RESPONSE VS. TRANSFER FUNCTION 12 
POLES AND ZEROS 13 
PHASE PROPERTIES 15 
LTI-SYSTEM 16 
DETERMINING POLES AND ZEROS 17 
CALIBRATION FILE 18 
S-PLANE Ù Z-PLANE 19 
FOURIER ⇒ LAPLACE ⇒ Z 21 

IMPULSE & STEP RESPONSE 22 

COMMON FILTER OPERATORS 24 

CHEBYSHEV 24 
BUTTERWORTH 24 
BESSEL 24 
FIR 25 
IIR 25 
COMPARING FILTERS 26 
NOTCH FILTER 27 
CAUSALITY 28 
FIR-EFFECT 29 

SAMPLING 30 

PROBLEMS WITH SAMPLING 31 
ANALOG TO DIGITAL CONVERSION 32 
ACCURACY AND DYNAMIC RANGE 33 
GAIN RANGING 34 
OVERSAMPLING AND DECIMATION 35 

 
Suggested literature: 
Scherbaum, F. 1996. Of Zeros and Poles. Fundamentals of Digital Seismology. In 'Modern 
Approaches in Geophysics', Kluwer Academic Publishers, 256 pages. 



THE SEISMOMETER 
 

 

 
s0401 

 
 

Three forces describe the motion of a seismometer: 
 

Inertial force (⇒ acceleration of the ground acting on mass 'm')  

f mu ti m= − && ( )  
Frictional force (dashpot  ⇒ the velocity of the mass)  

f Dx tf m= − & ( )  
Restoring force (the spring   ⇒ displacement of mass)  

f kx tsp r= − ( )  

⇓ 

0=++ fspi fff  

 
u t u t x tm g m( ) ( ) ( )= +  and & ( ) & ( )x t x tm r=  and && ( ) && ( )x t x tm r=  

 
 

mx t Dx t kx t mu tr r r&& ( ) & ( ) ( ) && ( )+ g+ = −  
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Dividing both sides by the mass 'm' leads to 
 

&& ( ) & ( ) ( ) && ( )x t D
m

x t k
m

x t u tr r r+ + = − g  

 

Substituting D
m

h= 2 0ω , and k
m

= ω0
2 , we get 

 

 && ( ) & ( ) ( ) && ( )x t h x t x t u tr r r+ g+ = −2 0 0
2ω ω  

 
 

 
Note, that 'h' is referred to as the 'damping constant' of the instrument,  

(the 'damping coefficient’ is ε ω= h 0) 
 
 

 && ( ) & ( ) ( ) && ( )x t x t x t u tr r r+ g+ = −2 0
2ε ω  

 
 

 
Rapid movements (T < T0, ω > ω 0) of the mass:  

acceleration (&&xr ) is high >  
the instrument measures ground displacement u x u x ug r g r g.(&& && )= ⇔ ≈  

 
Slow movements (T > T0, ω < ω 0) of the mass:  

acceleration (&&xr ) and velocity ( &xr ) are low >  
the instrument measures the ground acceleration &&u . (  g && )x ur g≈

 
 
 

⇓ 
 
 

 
Pendulums are therefore instruments with a resonance frequency much lower than the 

frequency of the expected seismic signal. 
 

Accelerometers are therefore instruments with an resonance frequency much higher 
than the frequency of the expected seismic signal. 
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COMPARISON 
 
Instruments measuring displacement, velocities and accelerations differ in their construction. 
Considering: 
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g&& ( ) & ( ) ( ) && ( )x t h x t x t u tr r r+ + = −2 0 0
2ω ω  

To observe rapid movements of the ground relative to the instrument's eigenperiod (ωsignal > ω0, 
Tsignal < T0), accelerations of the mass will be high compared with velocities and corresponding 
displacements, hence will be negligible and & ( ), ( )x t x tr r

&& ( ) && ( )

&& ( ) ( )
&& ( ) ( )

x t u t

x t u t

x t u t

r g

r g

r
g

= −

≈

≈

ω

ω

2

2
 

and the sensor measures ground displacement. These instruments are likely to be affected by ground 
tilt, temperature and air pressure effects. 

To observe slow movements of the ground relative to the instrument's natural period (ωsignal < ω0, 
Tsignal > T0), displacements of the mass will be high compared with velocities and corresponding 
accelerations, hence will be negligible and & ( ),&& ( )x t x tr r

ω0
2x t u tr g( ) && ( )≈ −  

and the sensor measures ground acceleration. Note, that 'xr' is usually very small which results in a 
small sensitivity lending itself to be used as a strong ground-motion instrument. 

Frequency Response Functions 
 

 
 

Pendulums are therefore instruments with an eigenfrequency much lower than the frequency of the 
expected seismic signal. 

 
Geophones are therefore instruments with an eigenfrequency lower than the frequency of the expected 
seismic signal. Hence, they operate at a most useful bandwidth above the natural frequency and exhibit 

a relatively narrow usable bandwidth. 
 

Accelerometers are therefore instruments with an eigenfrequency much higher than the frequency of 
the expected seismic signal. 



DAMPING 
 
 

The damping coefficient ‘ε’ can be determined from the logarithmic decrement 'Δ1/2':  
 

 
m0106 
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whereas a1 and a2 are amplitudes of consecutive peaks (1st maximum, 1st minimum) 

 

ε = 0 undamped resonance 

ε << ω0 
h < 0.5 

extremely underdamped ringing 

 
 
 

ε < ω0 
h < 1 

 

 
 
 

underdamped 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−= −

0

0

arcsin

)cos(
cos

)(

ω
εθ

θω
θ

ε textx tr
r

 

oscillates with T T
h

=
−

0
21

 

ε = ω 0 
h = 1 

 
critically 

x t x t e

T
r r

t( ) ( )= +

⎯ →⎯ ∞

−
0 1ε ε

 

ε > ω 0 

h > 1 

 
overdamped 

x t A e A er
c t c t( ) = +− −

1 2
1 2  

slow restitution, disturbs later arrivals 

desired ε < ω 0 (underdamped case) 
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CALIBRATION 
 
 

 
s0404 

 
 

The damping constant 'h' and the eigenperiod ‘T0’ can be evaluated from the first two amplitude peaks 
and the time of the second zero-crossing ‘T’: 

 
a1 = 0.086935 
a2 = -0.014175 
T = 1.1547 sec 
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FREQUENCY RESPONSE FUNCTION 
 

A harmonic force 
&& ( )u t A eg Input

j t= −ω ω2
 

causes the seismometer to react: 
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t

ut

x t A e

x t j A e

x t A e

r Output
j t

r Outpu
j t

r Outp
j t

( )

& ( )

&& ( )

=

=

= −

ω

ω

ω

ω

ω 2
 

 
with 'AInput' being the input-displacement,  

'AOutput' being the displacement of the mass within the seismometer (output-displacement). j = √-1. 
 

Based on 

 && ( ) & ( ) ( ) && ( )x t x t x t u tr r r+ g+ = −2 0
2ε ω  

we get 

− + + =ω ε ω ω ω2
0
2 22A j A t AOutput Output Output InputA  

 
The 'frequency response function' is finally given by the relation of 'Output' to 'Input': 

 

)(
222

0

2

ω
εωωω

ω jT
jA

A
Input

Output

i

o =
+−

==  

 
or, in other terms, 

22222
0

2

4)(
)(

ωεωω
ωω

+−
=jT

 

 

φ ω εω
ω ω

( ) arctan=
−

−
⎛
⎝
⎜

⎞
⎠
⎟

2

0
2 2  

and 
 

)()()( ωφωω jejTjT =  
 

This is the 'frequency response' of a pendulum! 
(The pendulum measures displacement at ω > ω 0  Ö   rapid ground movement) 

Note: The 'frequency response function' can be expressed by the Fourier transform of the outgoing 
signal divided by the Fourier transform of the incoming signal. 



THE ELECTRODYNAMIC SYSTEM 
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Dashpot is replaced by coil. 

 

I U
R Rinduced

induced

a i

=
+   

 
Ra... shunt resistance, Ri... internal resistance 

 

{ε ε= +
+0

pendulum spring a i

coil

b
R R( ) 124 34

  

 
hence, the damping constant 'h' of the combined system is (h = ε / ω 0) 

{h h b
R Rpendulum spring a i

coil

= +
+0

( )

'

124 34
 

with 'b' = b / ω 0 (= relative damping factor) 
 

Since U const x t x tinduced r r= ≈ =. & ( ) ( ) ω , the 'displacement frequency response' of an electrodynamic 
system is given by 

22222
0

2

4)(
)(

ωεωω
ωωω

+−
= GjT

 

 
with G = generator constant (output voltage/ground velocity) ⇒ [V/m/s] 
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SYSTEM THEORY 
 
A time-dependent voltage is applied at x(t). The RC-filter consists of a resistor 'R' (produces the 
damping in the system  ⇒  electronic equivalent of the dashpot) and a capacitor 'C' (⇒  electronic 
equivalent of the spring). 
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Or in other words: At 'y(t)' we measure the voltage difference  

y t x t RI t( ) ( ) ( )= −  

The current 'I(t)' is controlled by the capacitance 'C':  

I t Cy t( ) &( )=  

hence 

RCy t y t x t&( ) ( ) ( )+ − = 0 
 

This is a 'first order linear differential equation', which is 
1) a linear system (see equation) 

2) time invariant (R and C don't change) 
 

For 

  tj
Input

t
Output

tj
Output

eAtx

eAjtyeAty
ω

ωω ω

=

=⇒=

)(

)()( &

we get 

)(
1

1 ω
ω

jT
RCjA

A

Input

Output =
+

=  

 
(one-pole low pass filter with time-constant 'RC') 

⇓ 

2

2

1

1
1

11)(

c

j
jT

ω
ωω

τ
τ

ω
+

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=
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TRANSFER FUNCTION 
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g && ( ) & ( ) ( ) && ( )x t x t x t u tr r r+ + = −2 0
2ε ω  

⇓ 

g

Laplace Transform ( ) { } technics-electroin  ;;)()( ijjsdtetftf stL =+== ∫
∞

∞−

− ωσL

 s X s sX s X s s U sr r r
2

0
2 22( ) ( ) ( ) ( )+ + = −ε ω  

⇓ 

 T s X s
U s

s
s sdispl

r

g

( ) ( )
( )

= =
−

+ +

2

2
0
22ε ω  

or electrodynamic 

 2
0

2

3

2
0

2

2

2
)(

2
)(

ωεωε ++
−

=⎯→←
++

−
=

ss
sGsT

ss
sGsT displdisplvelvel  

The roots in the denominator (poles)  are 
 

( )p h1 2
2

0
2 2

01, = − ± − = − ± −ε ε ω ωh  

and in the underdamped (h<1) case: 

( )
02,1

0
2

2,1 1

ω

ω

=

−±−=

p

hjhp
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Pole position 'X', resonance frequency 'ω0' and damping 'h' for a seismometer in the s-plane. 
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FREQUENCY RESPONSE vs. TRANSFER FUNCTION 
 
 
 
 
 
 
 
 
 

Frequency response Transfer function 

applies to 

applies to stationary ground oscillations transient ground motions 

The function is defined as 

T(jω) = Y(jω) / X(jω) T(s) = Y(s) / X(s)  

and can be generally described by 

no general definition poles & zeros 

The advantages are: 

1) easy to calculate and 
2) used in 'existing systems' for considering 

the system response 

1) used to design system performances 
2) the 'physical concept' is explicitly known

Can be achieved by 

⇓ 

Fourier transform 

⇓ 

Laplace transform 
 
 



 POLES AND ZEROS 
 

The transfer function T(s) is special case of the frequency response 
 

T j( )ω
ω
ω

=

+

1

1
2

0
2

 

 
which can be expressed in a log-log fashion: 

 

 
s0211 

 
The frequency response decreases for frequencies above the eigenfrequency ω0 (example shows 0.2 

Hz) with 20dB/decade (= 1:1) 
 

RC
11

0 ==
− ω
τ  

 
which is called a pole in the s-plane. 

 
The inverse function leads to a zero instead of a pole thus causing the frequency response to increase 

above ω0. 
 

The frequency-response function of a RC-filter is completely defined by one pole and the inverse 
frequency-response function is defined by one zero on the real axis of the s-plane. 
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Graphical representation of a system having one pole (X) and one zero (0):  
 

 
 
 

The transfer function of this system becomes (proof see under LTI-systems) 
 

T s s s
s sp

( ) =
−
−

0
 

Hence, the frequency response function is 
 

T j j s
j sp

( )ω ω
ω

=
−
−

0
  

or 

)(0
0

00

)(
)(

)(
1)()( pp j

p

j

p

j eeejT θθθθ

ωρ
ωρ

ωρ
ωρω −− == v

v

v
v

 

 
 
 
 

The product of vectors pointing from the zeros to ‘jω’ is divided by the product of vectors pointing 
from the poles to ‘jω’ to arrive at the frequency dependent amplitude response. 

 
The sum of phases of poles are subtracted from the sum of phases of zeros to arrive at the frequency 

dependent phase response. 
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PHASE PROPERTIES 
 

 
s0303 

 
 

 minimum phase maximum phase 
 
 

 
The complex s-plane representation of stable 'one pole/one zero'-systems, having identical amplitude- 

but different phase response. 
 
 

filter comment 

minimum phase no zeros in the right half plane 

maximum phase all zeros in the right half plane 

mixed phase between minimum- and maximum phase 

linear phase no phase distortion, but constant shift at all frequencies 

x t a X j e aj a( ) ( ) ;− ⇔ >−ω ω 0  

zero phase phase response zero for all frequencies (filtering twice in 
opposite direction, no real-time processing possible!) 

all pass amplitude remains constant, phase response changes 
 
 

A causal stable system has no poles in the right half of the s-plane! 
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LTI-SYSTEM 
(Linear Time Invariant System) 

 
The differential equation of an electric circuit (RC filter): 

 

RCy t y t x t d
dt

y t y t x t&( ) ( ) ( ) ( ) ( ) ( )+ − = + + =α α β1 0 0 0 

 
is a special case (1st order system) of an n-th order LTI-system: 

 

α βk
k

n k

k
k

m kd
dt

y t d
dt

x t
= =

∑ ∑+ =
0 0

0( ) ( )  

 
The transfer function of an n-th order system is 

T s
s

s

s s

s s

k
k

m
k

k
k

n
k

m k
k

m

n p
k

n( )
( )

( )
=

−
=

− −

−

=

=

=

=

∑

∑

∏

∏

β

α

β

α

0

0

0
1

1
k  

 
Hence, the transfer function of a RC-filter is given by  

 

T s Y s
X s s

( ) ( )
( )

= =
−
+
β

α α
0

0 1  
 

In terms of poles and zeros we may express the transfer function as 
 

T s
s sp

( )
( )

=
−

−
β

α
0

1 1  
 

For an RC-filter, β0 = -1, α0 = 1 and α1 = RC, 
the filter has no zeros, but a single pole at 

 

s
RCp = − = − = −1 1

1α τ
1
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DETERMINING POLES AND ZEROS 
 

 
Sa_0309 

 

Frequency response of an ‘unknown’ pole-zero distribution (see also Scherbaum, F. 1996). 
 
 
 

Procedure: 
1. determine slopes 
2. determine ‘corner-frequencies’ 
3. define number of poles and zeros 

 
 

Example: 
(see figure) 

1. slopes are ω³, ω, ω-6 
2. corner frequencies are at: ω³ ↔ ω (0.05 Hz) and ω ↔ ω-6 (5 Hz) 
3. zeros:  3 zeros (≡ ω³) at origin (frequency = 0 Hz) 

poles:  2 poles (≡ ω³ ↔ ω) at 0.05 Hz 
  7 poles (≡ ω ↔ ω-6) at 5 Hz 
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CALIBRATION FILE 
 
A sensor with the following characteristics is given: 
• The sensor generates a voltage above 1 Hz (ω0 = 6.283) is proportional to ground velocity 
• Damping  'h' = 0.7 
• The generator constant 'G' = 100 V/m/s, the signal amplification before A/D conversion = 250 and 

the least significant bit of the A/D-conversion (LSB) for converting Volts into digital counts is 
1μV, or in other words 1V = 106 counts. 

 
Transfer Functions 

 
Velocity Transfer Function 

 
T s V

m s
s

s svel( )
/

²
² . .

= − ⎡
⎣⎢

⎤
⎦⎥ + +

100
87964 39 476  

 
Displacement Transfer Function 

is given by multiplying the velocity transfer function by 's' 
 

T s V
m

s
s sdisp( ) ³
² . .

= − ⎡
⎣⎢

⎤
⎦⎥ + +

100
87964 39 476  

 
Poles & Zeros 

 
Poles 

)487.4398.4(

)487.4398.4(
poles at two arrive  wehence,

283.6)71414.07.0()1²(

)2(

)1(

)2,1(0)2,1(

js

js

jshhs

p

p

pp

−−=

+−=

±−=⎯→⎯−±−= ω

 

Zeros 
s³ ⇒ 3 zeros at the origin of s-plane 

 

GSE Format 
 

For establishing a proper calibration file in the GSE (Global Scientific Experts) format, the generator 
constant 'G' (100 V/m/s) needs to be multiplied by the pre-amplifier constant of 250, we get 2.5 104 
V/m. This value has to be multiplied again by 106 to take account of the LSB and divided by 109 to 
convert the constant to counts/nm to comply with the GSE format. Therefore, a calibration file in the 
GSE format would look like: 
 
CAL1 1Hz                       PAZ 
2 
-4.398  4.487 
-4.398 -4.487 
3 
0.0000  0.000 
0.0000  0.000 
0.0000  0.000 
25.0 
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S-PLANE Ù Z-PLANE 
 

Purpose: Representation of discrete time series  

 L  ⇒ z 
 continuous   discrete 

Principle: 
 

TjTjTTjsT reeeeez ωωσωσ ==== + )(
 

 

{ }L x t t x t t e dt

x t t nT e dt x nT e

T T
st

n

st

n

snT

( ) ( ) ( ) ( )

( ) ( ) ( )

δ δ

δ

= =

−
⎛
⎝
⎜

⎞
⎠
⎟ =

−∞

∞
−

=−∞

∞

−∞

∞
−

=−∞

∞
−

∫

∑∫ ∑
 

 
Note: - ∞ and ∞ similar to the double sided Fourier Transform. 

 
For switching from continuous to discontinuous (discrete) time series, we formally alter  

 
x(nT) ⇒ x[nT] 

 
and it follows 

 

[ ]{ } [ ]L x nT x nT e
n

snT=
=−∞

∞
−∑  

 
with x[nT] = discrete time series with sample interval T 

 
 

Defining z = est and x[n] = x[nT], we get 
 

[ ]{ } [ ] ( )Z x n x n z X z
n

n= =
=−∞

∞
−∑  

 
with z being the continuous complex variable 

 
The z-transfer function is then given by 

 

( ) [ ]{ }
[ ]{ }

T z
Z y n
Z x n

=
 

 

 
Lenhardt 19 Restitution of Ground Motions 



    

jω

jω /2s

− ω /2j s

σ

z e= jωΤ

ωΤ

Re

Im

-1

+1

s-plane z-plane

 
 
 

T = sampling interval, ω = 2πf is the angular frequency, 
ωs = sampling frequency = 2 * Nyquist frequency 

 
 

case in s-plane position in z-plane 

s = 0 z = 1 (unit circle) 

σ < 0 (left side) r < 1 (inside unit circle) 

s = jω r = 1 (on unit circle)    Ö Fourier transform 

ω > 0 upper half 

ω < 0 lower half 

 

⇓ 

 

⇓ 

all poles on left side all poles inside unit circle (= causal and stable) 

no zeros on right side no zeros outside unit circle (= minimum phase) 
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 FOURIER ⇒ LAPLACE ⇒ Z 
 
 

FOURIER 
 

assumes 
periodic continuous time series 

(harmonic) 
 

{ }X j F x t

x t e dtj t

( ) ( )

( )

ω

ω

= =

−∞

∞

∫
 

 

LAPLACE 
 

assumes 
continuous time series 
with exponential decay 

 
{ }X s L x t

x t e dtst

( ) ( )

( )

= =

−∞

∞

∫
 

Z 
 

assumes 
discrete time series 

 
 
{ }X z Z x t

x n z n

n

( ) [ ]

[ ]

= =

−

=−∞

∞

∑
 

Integration 

x d
j

X j
t

( ) ( )τ τ
ω

ω⇒
−∞
∫

1  x d
s
X s

t

( ) ( )τ τ ⇒
−∞
∫

1  x n X z
z

X z
k

n

=

−

∑ ⇒ − =
−0

1

1 1
1

( ) ( )

 

Derivative 
d
dt

x t j X j( ) ( )⇒ ω ω  d
dt

x t sX s( ) ( )⇒  x n x n z X z[ ] [ ] ( ) ( )− − ⇒ −1 1  

Convolution 
 
 

x t h t X j H j( ) ( ) ( ) ( )∗ ⇒ ω ω  

 
 

x t h t X s H s( ) ( ) ( ) ( )∗ ⇒  

x n x n

x m x n m
m

1 2

1 2

∗ ⇒

−
=−∞

∞

∑  

Time shift 
 
 

x t a e X jj a( ) (− )⇒ − ω ω  

 
 

x t a e X ssa( ) (− )⇒ −  

x n n z X zn− ⇒ −
0

0 ( ) 

special case (inversion of signal) 

[ ]x n X
z

− ⇒ ⎛
⎝⎜

⎞
⎠⎟

1  
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IMPULSE & STEP RESPONSE 
 

Properties of the ’impulse’ - or Dirac ‘delta’ - function δ (t): 
 
 

 

{ }

{ } 1)()(

12)()(

)()(

)()(  areaunit 

0;0)(and1)(

=∫
∞
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A Fourier transform and a Laplace transform of the delta function are '1'. 

 
 

The frequency response function T(jω) is the Fourier transform of the impulse 
response function h(t). 

 
The transfer function T(s) is the Laplace transform of the impulse response function 

h(t). 
 
 

)()(for
1

)(
)(
)()(

)()(for
1

)(
)(
)()(

ttxsY
sX
sYsT

ttxjY
jX
jYjT

δ

δω
ω
ωω

===

===

 

 

∞−

−=

=∫
∞

∞−

−=

=

∫
∞−

==

≠=⎯⎯ →⎯∫
∞

∞−
=

dtstettL

dtftjettF

dt
tdxt

t
txdtt

ttdtt

δδ

πδδ

δ

δ

δδ

 



 
The step response is the output signal of a unit-step input signal x(t). The step-response is mainly used 

for calibration purposes (power off/power on). 
 

 

type of signal  Laplace transform X(s) 

Dirac-impulse δ(t) 1 

unit step x(t) 1/s 

because x(t) =∫ δ (t) dt, and the Laplace transform 
of an integral = X(s)/s 

 
 
 

Response to unit step: 
 

T s Y s
X s

Y s

s

sY s( ) ( )
( )

( ) ( )= = =1  

 
 

The step response function a(t) and the impulse response function h(t) are equivalent 
descriptions of a system. They are linked to each other by integration or 

differentiation, respectively. 
 

 

a t h d

h t d
dt

a t

t

( ) ( )

( ) ( )

=

=

−∞
∫ τ τ
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COMMON FILTER OPERATORS 
 
 

CHEBYSHEV 
 

 
fs = 4fc 

with fs...  sample frequency, fc... cut-off frequency 
 

The filter leads to considerable group delays near the cut-off frequency (problem for broadband 
systems). 

Nth-order Chebyshev polynomial: 

Tn+1(x) = 2x Tn(x) - Tn-1(x) ; n = 0, 1,... 
 
 
 

BUTTERWORTH 
 

 
Exhibits group delays too, but not as 'sharp' (in terms of amplitude response) as Chebyshev. 

A second order Butterworth high cut filter: 

F z a z z
a z a z

( ) = + +
+ +

− −

− −0

1 2

1
1

2
2

1 2
1  

 
 

BESSEL 
 
 

fs = 8fc 
 

Constant group delay (linear phase), peak amplitudes are accurate, little ringing and overshoot due to 
gentle amplitude response. 

Nth-order Bessel polynomial: 

Bn(x) =(2n-1)Bn-1(x)+f²Bn-2(x) 
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FIR 
(Finite Impulse Response, non-recursive) 

symmetric, always stable, many coefficients needed for steep filters (slow), realization 
of specifications easy (linear or zero phase can be defined), transfer function completely 

defined by zeros 
 

IIR 
(Infinite Impulse Response due to recursive filter) 

potentially unstable, few coefficients needed for steep filters, difficult (if not 
impossible) to design for specific characteristics, defined by poles and zeros, phase 

always distorted within passband of filter. 
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s0801 

 
FIR filter impulse response of the stage 4 of the QDP 380 digitiser by Quanterra causes ‘acausal’ 

oscillation (close to the corner frequency of the filter). This effect inhibits exact first onset picking! 
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COMPARING FILTERS 
 

 
m0202 
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NOTCH FILTER 
 

Designing filters to eliminate a certain frequency from the recorded spectrum - e.g. 16 2/3 Hz - 
constitutes a special task. Requirements are : 

 
1. steepness of the filter 

2. effectiveness 
3. phase should be undistorted 

 
 

 
 

 
Spike (top trace), impulse response due to poles and  zeros (centre) and amplitude response (bottom) 

for a notch filter eliminating signals near 6.25 Hz . Note: Poles are placed near ‘zeros’. 
 

GSE (Global Scientific Experts)-format as required in PITSA: 
 
CAL1  notch at 6.25Hz          PAZ 
2 
-6.846 38.828 
-6.846 -38.828 
2 
0.0 39.27 
0.0 -39.27 
1.0e9 
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CAUSALITY 
 

We distinguish between 
 

 causal-filters non-causal filters 
characteristic asymmetric symmetric 

advantage can be applied real time phase information remains 
disadvantage phase distorted large time-shift, precursor ringing 

used for picking onsets amplitude, polarization, etc. 
 

 
 
 Causal anti-alias filter

(250 Hz sampling rate)
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Non-causal anti-alias filter
(250 Hz sampling rate)
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FIR-EFFECT 
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SAMPLING 
 
 
Sampling is the process of taking discrete samples of a continuous data stream.  

 

 
s0501 

 
 

The sampling theorem:  
For a continuous time signal to be uniquely represented by samples taken at a sampling frequency of 
fdig, (every 1/fdig time interval), no energy must be present in the signal at and above the frequency 
fdig/2. fdig/2 is commonly called the Nyquist1 frequency (sometimes referred to as folding frequency). 
Signal components with energy above the Nyquist frequency will be mapped by the sampling process 
onto the so-called alias-frequencies falias within the frequency band of 0 to Nyquist frequency. This 
effect is called alias effect. 

f f nf nalias dig= − ∈; ℑ 

 
 

 
Example: ‘fdig’ = 100 Hz, ‘fNyquist’ = 50 Hz 

 
frequency alias frequency (n=1) alias frequency (n=2) 

60 40 140 

80 20 80 

120 20 80 

140 40 60 

150 50 50 

180 80 20 

190 90 10 
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1Nyquist, H. (1932). Regeneration Theory. Bell Syst.Techn.Journal, page 126-147. 



PROBLEMS WITH SAMPLING 
 
 

 
s0502 

 
Input signal with 1, 9, 11 Hz harmonic signals. 

 

 
s0502 

 
Reconstructed traces after discretizing with 10 Hz sampling frequency.  

Note phase shift of second trace!  
(from Scherbaum, F. 1996) 
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ANALOG TO DIGITAL CONVERSION 
 

 
s0601 

 
Example 

(simple and easy to implement, but only working up to 1 kHz) 
 

 
s0602 

 
Principle: 

The time it takes 'Ua' to exceed 'Ux' is measured.  
Each time step is counted and expressed in bits. 

 
Other principles are: 

1. Usage of reference voltages 
2. Weighted inputs 
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ACCURACY AND DYNAMIC RANGE 
 
 
 

Q LSB value
full scale voltage

n= =
2   

LSB value... voltage at least significant bit (e.g. 2.5 μV) 
n... bits of resolution 

 
s0604 

 

If full scale voltage of 2.5 V is used in connection with Q=2.5 μV, we get n = 20 bits of resolution 
(which is more than 16 bit and less than 32 bit). 

Dynamic range: 

[ ]

dB193D32n 
dB 96  D 16 n 
)12log(20

;log20
min

max

=⎯→⎯=

=⎯→⎯=

−=

⎯→⎯⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nD

dB
A
A

D

 

 
Lenhardt 33 Restitution of Ground Motions 



GAIN RANGING 
 
 

[ ]
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s0608 and s0610 
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OVERSAMPLING AND DECIMATION 
 

 
s0612 

 
(see Scherbaum, F. 1996) 
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