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WHAT'S MISSING? 
 
 
 
 
 
 
 

 
 
 
 
 

1.  special seismic source 
models 

2. site response 
ray tracing 
absorption 
scattering 
reflectivity 
macroseismology 

3. noise 
coupling effects 
simulating other 
instruments 
world wide networks 

4. archiving concepts 
data formats 
evaluation routines 
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OBJECTIVES 
 
 

Major Topics of  Global Seismology 
 

Source topics Earth structure topics 
Classical objectives 

A. Source location A. Basic layering (crust, mantle, core) 
B. Energy release B. Continent-ocean differences 
C. Source type C. Subduction zone geometry 
D. Faulting geometry, area, displacement D. Crustal layering, structure 
E. Earthquake distribution E. Physical state of layers 

Current research objectives 

A. Slip distribution on faults A. Lateral variations in crust, mantle, core 
B. Stresses on faults and in Earth B. Topography of internal boundaries 
C. Faulting initiation/termination C. Inelastic properties of the interior 
D. Earthquake prediction D. Compositional/thermal interpretations 
E. Analysis of landslides, eruptions, etc. E. Anisotropy 

 
 
 

Primary Sources of Seismic Waves 
 

Internal External Mixed 
Earthquake faulting Wind, atmospheric pressure Volcanic eruptions 
Buried explosions Waves and tides Landslides 

Hydrological circulation Cultural noise  
Magma movements Meteorite impacts  

Abrupt phase changes Rocket launches, jet planes  
Mine bursts, rock spalliation   

 
 

Characteristic Seismic Wave Periods 
 

Wave type Period (s) 
Body waves 0.01 - 50 

Surface waves 10 - 350 
Free oscillations 350 - 3600 

 
 
 

To achieve these goals, different instruments need to be employed. 



 

DISTORTION OF SEISMIC SOURCE 
SPECTRUM 

 
 

 

 
s0101 

 
 

S (ω) = A (ω)  I (ω)  R (ω)  B (ω) G (ω)  
 
with 

S (ω)... observed displacement spectrum 
A (ω)... spectrum of actual source signal 
I (ω)... instrument response 
R (ω)... site response incl. the effect of the free surface 
B (ω)... attenuation 
G (ω)... geometrical decay 
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PRINCIPLE 
 

OF DISTORTION OF THE SEISMIC SOURCE SPECTRUM 
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SEISMIC SOURCE SPECTRUM 
Brune Model1

 
The Brune earthquake model consists of a circular fault of radius 'r' along which a constant shear stress 
drop 'Δσ' takes place: 

M c u t dt c0 0= =
−∞

∞

∫ ( ) ( )Ω , r
M3 07

16
=

Δσ   , f
k V

r
S

0

2
=

π  

with 
M0... seismic moment (= G A D; G = modulus of rigidity, A = size of fault plane,  D = average 

displacement)  
Vs... shear wave velocity 
f0... corner frequency of s-wave 
k... constant, describes shape of source model (~ 2.34 for ‘Brune’ model) 

 
The moment magnitude 'Mw' is given by2: 

M MW =
2
3

6 10log( ) .−    ; Mo given in Nm 

 
m0101 

 

Expected source radius and corner frequency as function of moment and stress drop. Frequencies 
between f0/2 and 5f0 must be recorded for seismic moment and energy determinations (from 

Mendecki, A.J. 1997). 

                                                 
1see also Brune, J. 1970, 1971. Tectonic stress and the spectra of seismic shear waves from earthquakes. J.Geophys.Res., 
Vol.75, 4997-5009 (correction1971 in J.Geophys.Res., Vol.76, 5002). 
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2 Hanks, T.C. & Kanamori, H. 1979. A moment-magnitude scale. J.Geoph.Res. 84, 2348-2350 



EFFECT OF RECORDING INSTRUMENTS 
SEISMOMETERS 

 
Depending on the instrument deployed, recorded waveforms appear different. Short-period 
instruments allow the detection of high frequent seismic signals (e.g. PKP phases of remote 
earthquakes), whereas long-period instruments permit the detection of signals with lower frequencies 
(e.g. pPKP phases). Broad-band instruments are a compromise and combine both advantages. 
 
 

 
s0102 

 
 
top: ‘SPZ’ short period instrument (WWSSN) 
centre: ‘BBZ’ broad band instrument (KIRNOS) 
bottom: ‘LPZ’ long period seismometer (WWSSN) 
 
remark:  PKP  = core phase of P-wave from distant earthquake (Fiji Islands, distance ~ 151°) 
 pPKP  = surface reflection of PKP (can be used for focal depth determination) 

 
(see also Scherbaum, F. 1996) 
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EFFECT OF RECORDING INSTRUMENTS 
CORRECTION FOR FREQUENCY RESPONSE 

 
 
Converting seismic traces from e.g. velocity to displacement traces often leads to distinct onsets, 
which would have been difficult to detect on the original trace. 
 
 

 
 

s01050107 

 
top: velocity record 
bottom: corresponding displacement record reconstructed from velocity record 
 
(see also Scherbaum, F. 1996) 
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EFFECT OF NOISE ON DETERMINING SPECTRA 
Geophone versus Accelerometer 

 
To create acceleration-seismograms from velocity records, differentiating velocity records may 
enhance unwanted high frequent noise, thus obscuring the seismic spectrum. 
 

 
m0109 

 
x-axis: frequency (Hz), y-axis: amplitude 

 
top: pseudo-acceleration spectra (differentiated velocity record of geophone) 
bottom: acceleration spectra from accelerometer 
(see also Mendecki, A.J. 1997) 
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EVALUATION OF SEISMOGRAMS 
FREQUENCY DOMAIN 

 

 
s0108 

 
 

Displacement spectrum for P-wave after instrument correction (from Scherbaum, F. 1996).  
 
The seismic moment is given by the flat portion of the spectrum 'Ω( )0 ', with 'c' being a factor taking 
account of distance, attenuation and radiation: 
 

M c u t dt co = =
−∞

∞

∫ ( ) ( )Ω 0   
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FOURIER ANALYSIS – A BRIEF REVIEW 
 

 
Every periodic and non-harmonic process can be represented by a sum of harmonic time-series. The 
frequency-dependent amplitude of each harmonic time-series depends on the shape of the non-
harmonic process. 
 
 
A time-series f(t) can be approximated by the sum of 1st and higher harmonics ‘a’ and ‘b’. 
 

 
...2sinsin...2coscos)( 21210 ++++++= tbtbtataatf ωωωω  

  
 
The latter parameters constitute the frequency dependent amplitudes “(a²+b²)1/2“ and phases 
“arctan(a/b)” of the desired ‘Fourier’ spectrum.  
 
 
The Fourier-transform for a time series f(t) is 3
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Consider effects of limited bandwith, clipping and/ or dynamic range and the sampling rate!  
 
Which influence would they have on spectral analysis?  
 
Which wrong conclusions could be drawn? 
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3 remember that eiωt = cos(ωt) + i*sin(ωt) and e-iωt = cos(ωt) – i*sin(ωt), i = √-1. 



TIME DOMAIN 
 

 
s0109 

 
 
 
Various parameters are necessary to describe and evaluate seismic onsets (from Scherbaum, F. 1996). 

  
The seismic moment of the signal is given by integration of the displacement pulse 'u(t)', with 'c' being 
a factor taking account of distance, attenuation and radiation: 
 

M c u t dt co = =
−∞

∞

∫ ( ) ( )Ω 0  

 
Other parameters in the time domain are: 
1. t01-, t01, t01+... arrival time with error margin (depending on noise level!) 
2. a1extr, t1extr... amplitude and time of first extremum 
3. amax, tmax... amplitude and time of maximum amplitude 
4. amin, tmin... amplitude and time of minimum amplitude 
5. tend...  end of signal (depending on noise level!) 
6. t01, t02, tr start and end-time of signal used to determine the signal moment, rise time 
7. envelope affected by attenuation 
8. & other onsets and extremes with different periods. 
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