INTERPRETATION OF SEISMOGRAMS

INTRODUCTION	2
SEISMIC ONSETS	3
PROPERTIES	3
NOMENCLATURE	4
BODY WAVES	4
CRUSTAL PHASES	4
DEPTH PHASES	4
CORE PHASES	4
SURFACE WAVES	5
SURFACE WAVE RECURRENCE	6
TRAVEL TIME CURVES	7
DETERMINATION OF SEISMIC SOURCE PARAMETERS	8
LOCATING SEISMIC EVENTS	8
1. GEIGER - METHOD (1912)	8
2. BAYESIAN APPROACH	9
3. LOCATION WITH APPROXIMATE VELOCITY MODELS	10
4. RELATIVE LOCATION TECHNIQUE	10
5. SIMULTANEOUS HYPOCENTER AND VELOCITY DETERMINATION	11
6. OTHER LOCATION METHODS	12
Linear Methods	12
Large Time Residuals and L1 Norm	12
Nelder-Mead Simplex Procedure	12
SOURCE PARAMETERS	13
RISE TIME	13
SIGNAL MOMENT	14
OTHER SOURCE PARAMETERS	16
FAR FIELD EFFECTS	17
PEAK GROUND VELOCITY	17

Suggested literature:

Lay, T. & Wallace, T.C. 1995. Modern Global Seismology. Academic Press, Inc.

Scherbaum, F. 1996. <u>Of Zeros and Poles</u>. Fundamentals of Digital Seismology. In 'Modern Approaches in Geophysics', Kluwer Academic Publishers. 256 pages.

Thurber, C.H. & Rabinowitz, N. (eds.) 2000. Advances in Seismic Event Location. Kluwer Academic Publishers, Dordrecht.

INTRODUCTION

Keywords: Source & Path

Broadband seismic recording (top = horizontal, bottom = vertical component) of a deep earthquake beneath Peru (May 24, 1991)

Investigating the Earth's interior. The Perturbation Index reflects the degree of heterogeneity.

SEISMIC ONSETS

PROPERTIES

Definition:

(see Scherbaum, F. 1996, after Seidl & Stammler, 1984) The discontinuity of the signal front at t = 0 is called an **onset of order** p, if f(p)(0+) is the first non-zero derivative.

S1011

Onset distortion of a far field Brune model ground displacement pulse (top trace). Bottom trace: simulated Wood-Anderson seismograph output). Comment: A zero order onset (p = 0) would be a step-function (= no return to DC).

NOMENCLATURE

BODY WAVES

CRUSTAL PHASES

DEPTH PHASES

lw0603

CORE PHASES

NOMENCLATURE

SURFACE WAVES

lw0610

Examples of Rg and Lg waves (top: record from shallow explosion, distance 39 km, centre: same as top trace, but low-pass filtered, bottom: vertical component of nuclear explosion, distance 24°)

Period 3 - 60 seconds R or LR

(Rayleigh waves)

L or LQ (Love waves, 'Q' = Querwellen)

NOMENCLATURE

SURFACE WAVE RECURRENCE

G... great-circle long-period Love waves (named after Gutenberg) R... Rayleigh waves X... Rayleigh-wave overtones

1989 Loma Prieta earthquake (top: transverse component, bottom: longitudinal component)

TRAVEL TIME CURVES

DETERMINATION OF SEISMIC SOURCE PARAMETERS

LOCATING SEISMIC EVENTS

General: Best solution is given by the <u>global</u> minimum of residuals.

(see also Gibowicz, S.J. & Kijko, A. (1994): An Introduction to Mining Seismology, Academic Press)

1. GEIGER - METHOD (1912)

Classic approach. Sum of squared time-residuals r ('misfit function')

$$\Phi (t_0, x_0, y_0, z_0) = \sum r_1^2$$

r_i= t_i - t_0 - T_i (x_0, y_0, z_0)

t0... focal time

- t_i... observed travel time
- T_i... calculated travel time

has to become a minimum.

Procedure of iteration process

- 1. Guess trial origin time t_0^* and hypocenter $(x_0^*, y_0^*, z_0^*) = \mathbf{\theta}^*$.
- 2. Compute time residuals r_i and derivatives at point θ^* ($t_0^*, x_0^*, y_0^*, z_0^*$)
- 3. Solve system of four linear equations $d\theta = B - 1 b$ with B = ATA and b = ATr. $d\theta$ represents the adjustmentvector for the origin time and hypocenter coordinates with error **r**.

$$\begin{aligned} & \boldsymbol{\theta}_{new} = \boldsymbol{\theta}^* + \mathrm{d}\boldsymbol{\theta} \\ & \boldsymbol{\theta}^* = \boldsymbol{\theta}_{new} \end{aligned}$$

4. Repeat from point 2 until a termination criteria is met.

Based on the *Singular Value Decomposition* (SVD), the condition number $(\lambda^2 max/\lambda^2 min, with \lambda being the eigenvalues of the matrix$ **A**given by**A**=**UAV**T), represents the quality of the matrix**B**.

Problems:

- 1. matrix A ill defined (near singular): leads to <u>oscillation</u> of $d\theta$
- 2. and/or poor choice of θ^* : leads to convergence at <u>local</u> and not global minimum

Solution:

- 1. Centring: Travel times are similar (hypocentre outside of network). Mean values are used for initial estimate θ^* , except for t₀^{*}.
- 2. Scaling: network and hypocentre are at the same mining level.

Used in South Africa and Poland.

2. BAYESIAN APPROACH

Location algorithm is extremely efficient.

Input: Arrival times $\mathbf{t} = (t_1,...,t_n)^T$ and a priori location of seismic event $\mathbf{h} = x_0,y_0,z_0)^T$ Assumption: Time residuals are Gaussian distributed. Hypocentre must be close to mine workings.

Problem: Wrong a priori location

Solution: If depth can be fixed, the location accuracy becomes very good.

Used in 30 mines in Poland. Tests were performed in South Africa and China.

Hypocentre location without a priori information. The depth is badly resolved due the dominating horizontal spread of the network

3. LOCATION WITH APPROXIMATE VELOCITY MODELS

Generalization of the Least-Square Procedure.

Assumption: Velocity model consists of random variables. Their deviations from an average model are Gaussian distributed.

Problem: Layered structure (e.g. lava and quartzite)

Solution: Selection of sensors within strata of interest, after first location estimate has been made.

Used in Poland and China.

4. RELATIVE LOCATION TECHNIQUE

(ATD = arrival time difference)

30% more accurate than the classic approach and fast algorithm (no iterations necessary). All P-wave-arrivals of particular event are related to a reference event. The difference of arrival-times is minimized by adjusting the coordinates and focal time of the master event.

Problems: Wrong reference event - or unknown focal time.

<u>Solution</u>: Careful selection of reference event according to first arrival, etc. Focal time of reference event can be estimated from first arrival.

Does not work in a layered structure, where wave paths cross different geology.

Used in Germany and Poland.

Average errors of epicentre locations of 354 dynamite blasts. ATD improves locations by 30 %.

5. SIMULTANEOUS HYPOCENTER AND VELOCITY DETERMINATION

Simultaneous location of <u>a group of seismic events</u> and the velocity model.

Follows ATD-technique. Known as *Simultaneous structure and hypocenter* (SSH) determination or *Joint determination of hypocentres* (JHD). The method does not require calibration blasts, is fast and can be run on small computers.

Problem: No correlations between arrival-time errors are allowed. Highly unstable method.

Solution: Automatic phase picker. Some a priori assumption necessary to stabilize iteration process.

Used in Czech Republic and South Africa.

Conventional and JHD-relocations from events located near the Kurile subduction zone.

6. OTHER LOCATION METHODS

Linear Methods

Fast and free from iterative problems. Requires constant velocity-model.

$$A \theta = \mathbf{r}$$

$$\{A\}_{ij} = \begin{cases} 2(t_{i+1} - t_i)V \\ 2(x_{i+1} - x_i) \\ 2(y_{i+1} - y_i) \\ 2(z_{i+1} - z_i) \end{cases} \text{ for } j = 1$$
for $j = 2$

$$\{\mathbf{r}_i\} = (\mathbf{x}^2_{i+1} - \mathbf{x}^2_i) + (\mathbf{y}^2_{i+1} - \mathbf{y}^2_i) + (\mathbf{z}^2_{i+1} - \mathbf{z}^2_i) + (\mathbf{t}^2_{i+1} - \mathbf{t}^2_i) \mathbf{V}^2$$

with 'i' being the station number.

Often used to find first location-estimate for iterative procedures.

Large Time Residuals and L1 Norm

Takes account of arrival time-residuals, which are not Gaussian distributed. The misfit-function

$$\Phi(t_0, x_0, y_0, z_0) = \sum |r_i|$$

decreases effects of few large time residuals.

Problem: Difficult to formulate matrix and inversion

Solution: Minimization procedure (simplex subroutine)

Used in USA and South Africa.

Nelder-Mead Simplex Procedure

Relatively slow, but avoids calculation of derivatives (which can be very small, thus leading to ill-conditioned matrices). Constructs simplex structures, where the number of vertices = 1 + number of unknowns. Searches for best solution by changing and moving the simplexstructure through the space of unknowns. Solution is found when the simplex structure collapses in itself.

Relatively new.

SOURCE PARAMETERS

(TIME DOMAIN)

RISE TIME

The 'rise time' can be determined from the displacement record ($a_{max} = \max$. amplitude of recorded ground displacement):

Alternatively, one can measure the length of the pulse duration from the velocity record (time between zero-crossings, bottom trace):

SOURCE PARAMETERS

(FREQUENCY DOMAIN)

SIGNAL MOMENT

 $M_0 = G A D$

with G... modulus of rigidity, D... average displacement (slip) = U(0), A... area of slip

$$M_{0} = CU(0)$$
$$U(0) = \int_{-\infty}^{\infty} u(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} u(t)e^{-j2\pi 0t}dt = \int_{-\infty}^{\infty} u(t)dt = m_{s}$$

with C... constant (= GA)

The pulse area of the displacement in the time domain ($m_s = signal moment$) equals the spectral level at U(0) in the frequency domain.

The seismometer affects the shape of the recorded displacement pulse u(t):

$S(j\omega) = U(j\omega)T(j\omega)$

The seismometer acts as a high pass filter. The frequency response function $'T(j\omega) = 0'$ at ' $\omega = 0'$. The displacement pulse becomes two-sided, the area between the first arrival (onset) and the first zerocrossing underestimates the signal moment.

Signal moment and spectral level U(0) as if recorded by a 5-second displacement seismometer with damping factor of 0.707.

OTHER SOURCE PARAMETERS

The seismic moment, seismic energy, corner frequency, source radius, stress drop can be estimated by comparing power spectra of velocities and displacements:

$$S_{V2} = 2\int_{0}^{\infty} V^{2}(f)df; \longleftrightarrow S_{D2} = 2\int_{0}^{\infty} D^{2}(f)df$$

 $\Omega_0 = 2S_{V2}^{-1/4}S_{D2}^{3/4}$

$$M_0 = 4\pi\rho V_S^3 \Omega_0 R_a$$

with a radiation factor

$$R_c = 0.55$$
 for P – waves and $R_c = 0.63$ for S – waves,
shear wave velocity $V_s = 3400 \text{ m/s}$, density = 2700kg / m³

$$E_s = 4\pi\rho V_S S_{V2}$$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{S_{V2}}{S_{D2}}}$$

$$r = \frac{kV_S}{2\pi f_0}$$

with a source shape factor 'k' of = e.g. 2.34 (Brune)

$$\sigma = \frac{7M_0}{16r^3}$$

Note: Effect of limited bandwidth!

See Di Bona, M. & Rovelli, A. 1988. Effects of the bandwidth limitation on stress drops estimated from integrals of the ground motion. Bull.Seism.Soc.Am., Vol.78, 1818 -1825.

FAR FIELD EFFECTS PEAK GROUND VELOCITY

(see McGarr, 1991¹, and Mendecki, 1997)

Far field peak ground velocity and source displacement as a function of the stress drop and seismic moment.

¹McGarr, A.(1991). Observations constraining near-source ground motions estimated from locally recorded seismograms. *J.Geophys.Res.*, 96, 16495-16508.