SEISMISCHE BEOBACHTUNGEN 2010

Die seismischen Beobachtungen und die technische Ausrüstung sind in folgende Abschnitte gegliedert:

- Bebenstatistik des Österreichischen Erdbebendienstes
- Das seismisches Stationsnetz in Österreich
- Erdbeben in Österreich
- Ausgewählte weltweite Erdbeben

1. BEBENSTATISTIK

Im Jahr 2010 registrierte der Österreichische Erdbebendienst mit seinem Stationsnetz weltweit 5585 seismische Ereignisse, wovon 1302 Ereignisse stark genug waren, um automatisch detektiert zu werden (siehe Abb.1). Jedes einzelne Ereignis wurde manuell ausgewertet, wobei insgesamt 69356 Phaseneinsätze der Bodenbewegung bearbeitet wurden. Der Großteil der Erschütterungen war auf tektonische Erdbeben zurückzuführen, 715 Sprengungen und 510 Bergschläge gingen auf das Konto von menschlichen Aktivitäten.

Knapp ein Viertel aller registrierten Ereignisse wurden in Österreich lokalisiert. Aufgrund zweier Erdbebenschwärme in Tirol lag im Jahr 2010 die Anzahl der registrierten Erdbeben mit 796 Ereignissen wesentlich höher als jene der Sprengungen (481).

Abbildung 1: Bebenstatistik des Österreichischen Erdbebendienstes für das Jahr 2010

Der Österreichische Erdbebendienst wertet die seismischen Ereignisse mittels Antelope®-Software von BRTT, Inc (Boulder Real Time Technology, <u>www.brtt.com</u>) seit etwa 15 Jahren aus. Die analysierten Erdbeben sind auf der Webseite der ZAMG zu sehen (http://zamg.ac.at/erdbeben/aktuell/welt/).

1. DAS SEISMISCHE STATIONSNETZ IN ÖSTERREICH

Das seismische Netzwerk besteht zurzeit aus 13 Breitband- und 6 kurzperiodischen Erdbebenstationen (Abb. 2), die über das Bundesgebiet verteilt sind. Sie liefern ihre Daten kontinuierlich mit einer maximalen Verzögerung von 10 Sekunden in die Zentrale auf der Hohen Warte in Wien, wo sie von Seismologen analysiert werden. Weitere 29 Strong-Motion Stationen sind in Betrieb, die nur bei starken Bodenbewegungen eine Aufzeichnung liefern.

Es erfolgt ein permanenter Datenaustausch mit den Erdbebendiensten benachbarter Ländern, wodurch eine verbesserte Lokalisierungsgenauigkeit erzielt werden kann. Dies ist vor allem bei Erdbeben in Grenzregionen von Bedeutung. Die Seismogramme der österreichischen Erdbebenstationen können allen Interessierten über AutoDRM (Automatic Data Request Manager, seismischer Datenauszutausch über Email) zugänglich gemacht werden.

Alle Stationen sind mit Blitzableitern sowie einer unterbrechungsfreien Stromversorgung (UPS) ausgerüstet. Im Einsatz sind Strong-Motion Sensoren der Firma Kinemetrics ® - FBA23 und EpiSensoren mit Q330 data loggers, Breitbandsensoren STS-2 zusammen mit verschiedenen Quanterra dataloggers. Zeitsignale werden über DCF oder GPS empfangen. Sechs kurzperiodischen Sensoren vom Typ Teledyne S13 sind noch im Gebrauch.

Abbildung 2: Verteilung der seismischen Stationen in Österreich

SEISMISCHE STATIONEN

vom ÖSTERREICHISCHEN SEISMOLOGISCHEN DIENST / ZAMG

betrieben bzw. im Ausland mitbetreut

ISC-Code	Lage	Breite	Länge	Höhe	in	Betrieb	seit

DIGITALE STATIONEN

Kurzperio	odiso	che Stationen	(S13,	vertikal	/ GEOTECH)			
MOTA	+	Moosalm			47.3448	11.1037	1575	m	1990
SQTA	+	St. Quirin			47.2205	11.2087	1307	m	1989
WATA	+	Walderalm			47.3357	11.5763	1492	m	1989
WTTA	+	Wattenberg			47.2638	11.6363	1764	m	1990
LFVA	*	Feldkirch			47.2667	09.5833	435	m	1997
RSNA	*	Schwadorf			48.0698	16.5813	160	m	1996

Breitbandstationen (Breitband: STS2 / Streckeisen)

ABTA	+	Abfaltersbach/Pustertal	46.7474	12.5123	1041	m	2006	
ABSI	+	Aberstckl/Sarntal/ITA	46.7285	11.3205	1801	m	2006	* * * *
ARSA	+	Arzberg	47.2505	15.5232	577	m	1997	
BOSI	+	Bozen/Zivilschutzzentr./ITA	46.4952	11.3185	242	m	2006	****
CONA	+	Conrad-Observatorium	47.9282	15.8618	1046	m	2001	
CSNA	+	CONA - Schacht	47.9283	15.8588	1039	m	2007	
DAVA	+	Damüls	47.2867	09.8803	1602	m	1999	
FETA	+	Feichten/Kaunertal	47.0211	10.7291	1632	m	2006	
JAVC	+	Velka Javorina/CZ	48.8591	17.6707	828	m	1994	* *
KRUC	+	Moravsky Krumlov/CZ	49.0619	16.3952	341	m	1994	* *
KBA	+	Kölnbreinsperre	47.0784	13.3447	1721	m	1997	
KOSI	+	Kohlern/Titschen/ITA	46.4630	11.3778	1604	m	2006	* * * *
MOA	+	Molln	47.8495	14.2659	572	m	1996	
MORC	+	Moravsky Beroun/CZ	49.7768	17.5425	753	m	1997	* * *
MOSI	+	Gromontoni/Vinschgau/ITA	46.6164	10.5495	1957	m	2006	* * * *
МҮКА	+	Terra Mystica/Bad Bleiberg	46.6299	13.6416	909	m	2006	
OBKA	+	Hochobir	46.5092	14.5489	1075	m	1998	
RETA	+	Reutte/Plansee	47.4871	10.7623	965	m	2006	
RISI	+	Rein in Taufers/Ahrntal/ITA	46.9480	12.0787	1785	m	2006	* * * *
ROSI	+	Rokopf/Sterzing/ITA	46.9281	11.4118	1917	m	2006	****
SOKA	+	Soboth, Koralpe	46.6779	15.0327	1008	m	2007	
WTTA	+	Wattenberg	47.2638	11.6363	1764	m	2002	

\sim	-		
$(\cap$	de.		
~~	ac.		

DIGITALE STRONG-MOTION STATIONEN (Daten werden nicht offiziell verteilt)

Strongmotion Station (SMACH / SIG-SA)

VIE1	*	Vienna/Palais Festetics	48.218	16.362	168 m	1992
VIE2		Vienna/Uhrenmuseum	48.211	16.370	170 m	1992
VIE3		Vienna/Hauptschule	48.191	16.369	180 m	1993
VIE4		Vienna/Kindergarten	48.230	16.424	160 m	1992
VIE5		Vienna/Schloss Neuwaldegg	48.236	16.290	318 m	1992
WRN3		Wr.Neustadt/Eichbuechl	47.760	16.277	361 m	1994

Strongmotion Station (FBA23 / Kinemetrics)

ADSA	*	Kindergarten, Admont	47.5771	14.4570	633	m 2001
BITA	*	Berufsfeuerwehr, Innsbruck	47.2613	11.4055	579	m 1997
DFSA	*	Dammfuss, Koralpe	46.6779	15.0362	998	m 1995
DKSA	*	Dammkrone, Koralpe	46.6779	15.0362	1076	m 1995
KBA	+	Koelnbreinsperre	47.0784	13.3447	1721	m 1997
KEKA	*	Kelag, Klagenfurt	46.6210	14.3103	438	m 1999
LFVA	*	Feldkirch (incl. S13)	47.2705	09.6091	437	m 1997
OBSA	*	Admontbichl, Obdach	47.0781	14.6839	884	m 2001
RSNA	*	Schwadorf (incl. S13)	48.0695	16.5811	162	m 1996
RKSA	*	Gemeindeamt, Kindberg	47.5051	15.4484	569	m 1999
RWNA	*	Rathaus, Wr.Neustadt	47.8122	16.2432	265	m 1997
SKTA	*	Kienberg 1, Schwaz	47.3453	11.7407	555	m 1995
SPTA	*	Putzenzeche, Schwaz	47.3461	11.7444	555	m 1995
SVKA	*	St.Vinzenz, Koralpe	46.6962	15.0131	1090	m 1995
WOTA	*	Wolfsgraben, Arlberg	47.1333	10.2772	1280	m 2002

Strongmotion Station (EpiSensor / Kinemetrics)

ABTA	+	Abfaltersbach/Pustertal	46.7474	12.5123	1041 m	2006	
ABSI	+	Aberstck/Sarntal/ITA	46.7285	11.3205	1801 m	2006	* * * *
BOSI	+	Bozen/Zivilschutzzentr./ITA	46.4952	11.3185	242 m	2006	* * * *
CSNA	+	CONA - Schacht	47.9283	15.8588	1039 m	2007	
FETA	+	Feichten/Kaunertal	47.0211	10.7291	1632 m	2006	
KOSI	+	Kohlern/Titschen/ITA	46.4630	11.3778	1604 m	2006	* * * *
MOSI	+	Gromontoni/Vinschgau/ITA	46.6164	10.5495	1957 m	2006	* * * *
МҮКА	+	Terra Mystica/Bad Bleiberg	46.6299	13.6416	909 m	2006	
OBKA	+	Hochobir	46.5092	14.5489	1075 m	1998	
RETA	+	Reutte/Plansee	47.4871	10.7623	965 m	2006	
RISI	+	Rein in Taufers/Ahrntal/ITA	46.9480	12.0787	1785 m	2006	* * * *
ROSI	+	Rokopf/Sterzing/ITA	46.9281	11.4118	1917 m	2006	* * * *
SOKA	+	Soboth, Koralpe	46.6779	15.0327	1008 m	2007	
WTTA	+	Wattenberg	47.2638	11.6363	1764 m	2003	

+ Direkte Verbindung per Telefonleitung zu ZAMG-Wien
* Wählleitung von ZAMG-Wien
** Datenverteilung durch IPE-Brno
*** Stationsverbindungen GFZ-Potsdam (GEOFON), ZAMG and IPE (Tschechien)
**** Stationsverbindung mit Süstirol/Italien

- 1 Abgebaut am 1. Oktober 2010, neuer Standort 2011 2
- zur Zeit außer Betrieb, neuer Standort 2011

2. ERDBEBEN IN ÖSTERREICH

Im Jahr 2010 ereigneten sich in Österreich 796 Erdbeben, die mit dem seismischen Stationsnetz des Österreichischen Erdbebendienstes registriert wurden. Hiervon wurden 50 Erdbeben von der Bevölkerung verspürt und dem Erdbebendienst gemeldet (Abb.3). Von diesen Beben ereigneten sich 20 in Tirol, 10 in Kärnten, acht in Niederösterreich und je vier in Oberösterreich und der Steiermark; vier Ereignisse hatten ihr Epizentrum im benachbarten Ausland: zwei in Liechtenstein und je eines in Südtirol und Ungarn.

Nachdem von den erwähnten 50 Beben in der ersten Jahreshälfte lediglich zwölf aufgetreten waren, häuften sich die seismischen Ereignisse ab Anfang Juli. Am 9. Juli wurde Imst in Tirol um 8h28 MESZ von einem Beben der Richter-Magnitude 3,3 mit einer Intensität von bis zu 5 Grad der zwölfstufigen Europäischen Makroseismischen Skala (EMS-98) erschüttert, gefolgt von einem schwächeren Nachbeben der Magnitude 2,8 knapp 6 Stunden später.

Am 24. Juli ereignete sich um 18h46 MESZ ein Beben bei Arnfels im Bezirk Leibnitz in der Steiermark, das eine Magnitude von 3,0 aufwies und bei einer maximalen Intensität von 5 Grad EMS-98 einzelne leichte Gebäudeschäden verursachte.

Am 30. August bebte um 6h10 MESZ die Erde in Feldkirchen in Kärnten. Dieses Beben der Magnitude 2,8 hatte eine Intensität von 5 Grad EMS-98, wobei auch ein leichter Schadensfall gemeldet wurde.

Am 11. Oktober gab es um 21h08 MESZ ein Beben nordöstlich von Melk in Niederösterreich, das nur eine Magnitude von 2,3 aufwies. Aufgrund des nur 3 km tief gelegenen Bebenherdes wurde jedoch eine Intensität von 5 Grad EMS-98 erreicht.

Am 19. Oktober ereignete sich um 2h38 MESZ bei Schwaz in Tirol ein Erdbeben der Magnitude 4,0. Es war damit das stärkste Erdbeben in Österreich des Jahres 2010. Aufgrund der für Österreich eher großen Herdtiefe von 14 km wies das Beben lediglich eine Epizentralintensität von 5 Grad EMS-98 auf. Dieses Ereignis wurde von über 1100 Personen an den Erdbebendienst gemeldet und bildete den Höhepunkt einer Serie, die am 12. Oktober begonnen hatte und bis zum 27. Oktober insgesamt 432 Beben umfasste, von denen mindestens neun auch von der Bevölkerung verspürt wurden.

Am 25. Oktober bebte die Erde um 22h00 MESZ in Liechtenstein bei Feldkirch in Vorarlberg mit einer Magnitude von 3,1 und erreichte eine Intensität von 5 Grad EMS-98, wobei vereinzelt auch leichte Schäden an Gebäuden entstanden. Dieses Beben wurde von 234 Personen an den Erdbebendienst gemeldet.

Neben der Registrierung der tektonischen Erdbeben wurden weitere 490 Ereignisse in Österreich lokalisiert, deren Ursache auf Sprengungen und Bergschläge zurückzuführen sind.

Grad	Erdbebenwirkungen an der Erdoberfläche
3	Schwach fühlbar: Wird von wenigen Personen in Gebäuden wahrgenommen. Ruhende Personen empfinden ein leichtes Schaukeln oder Rütteln.
4	Deutlich fühlbar: Wird in Gebäuden von vielen Personen und im Freien vereinzelt wahrgenommen. Einige Schlafende erwachen. Fenster, Türen und Geschirr klirren.
5	Stark fühlbar: Wird in Gebäuden von allen Personen, im Freien von einigen wahrgenommen. Viele Schlafende erwachen. Einige Personen erschrecken. Das gesamte Gebäude schwankt. Hängende Gegenstände pendeln stark. Kleine Objekte werden verschoben. Türen und Fensterläden schlagen auf und zu.

INTENSITÄTSSKALA EMS-98 Auszug aus der 12-stufigen Europäischen Makroseismischen Skala 1998, basierend auf Mercalli-Sieberg

MAKROSEISMISCHE BEOBACHTUNGEN

IN ÖSTERREICH IM JAHR 2010

Nr	Datum	Weltzeit	Lokalzeit	Breite	Länge	Herdtiefe	Epizentrum	Land	I ₀	ML
1	5. Jan	04:44	05:44	47,55	15,50	5	Krieglach, Veitsch	Steiermark	3-4	2,0
2	19. Jan	09:21	10:21	46,60	13,87	12	Villach	h Kärnten		2,5
3	19. Jan	18:44	19:44	47,66	13,75	2#	Altaussee	Steiermark	2-3	2,7
4	21. Jan	16:20	17:20	46,83	12,99	7	Kreuzeck-Gruppe	Kärnten	4	2,6
5	9. Mär	00:26	01:26	46,53	14,28	3	Ferlach	Kärnten	4	1,7
6	3. Apr	13:10	15:10	46,82	11,18	-	St. Leonhard in P.	Italien	3,5*	3,1
7	6. Apr	08:23	10:23	47,20	10,74	7	Imst	Tirol	4	2,6
8	17. Mai	14:07	16:07	46,48	14,47	9	Hochobir	Kärnten	4	2,9
9	17. Mai	14:08	16:08	46,48	14,48	9	Hochobir	Kärnten	4	2,9
10	24. Jun	17:47	19:47	47,94	16,40	6	Ebreichsdorf	Niederösterreich	3-4	2,2
11	25. Jun	01:09	03:09	46,98	14,31	5	NW v. Friesach	Kärnten	4	2,3
12	28. Jun	18:13	20:13	47,00	12,42	4	Virgen	Tirol	4	2,2
13	9. Jul	06:28	08:28	47,25	10,72	10	Imst	Tirol	4-5	3,3
14	9. Jul	12:11	14:11	47,26	10,73	8	Imst	Tirol	4	2,8
15	18. Jul	08:28	10:28	47,85	16,52	5	Wr. Neustadt	Niederösterreich	3-4	2,0
16	24. Jul	16:46	18:46	46,66	15,34	5	Arnfels	Steiermark	5	3,0
17	29. Jul	09:24	11:24	47,77	14,44	-	Hengstpass	Oberösterreich	4	1,8
18	4. Aug	19:09	21:09	47,53	13,48	10	Gosaukamm	Oberösterreich	4-5	3,3
19	5. Aug	15:07	17:07	47,48	13,51	10	Gosaukamm	Oberösterreich	3-4	2,7
20	20. Aug	21:10	23:10	46,82	16,55	-	Zalalövö	Ungarn	3-4*	2,7
21	30. Aug	04:10	06:10	46,71	14,17	6	Feldkirchen	Kärnten	4-5	2,8
22	31. Aug	07:59	09:59	47,65	15,90	5	Schottwien	Niederösterreich	4	2,7
23	5. Sep	10:24	12:24	48,62	14,95	5	Groß-Gerungs	Niederösterreich	5	2,9
24	13. Sep	18:46	20:46	47,15	14,13	5	NW von Murau	Steiermark	4-5	2,6
25	23. Sep	12:29	14:29	47,29	10,37	8	Holzgau, Lechtal	Tirol	4	2,8
26	9. Okt	02:48	04:48	47,24	9,54	4	W v. Feldkirch	Liechtenstein	3-4	1,7
27	11. Okt	19:08	21:08	48,26	15,35	3	NNE v. Melk	Niederösterreich	5	2,3
28	12. Okt	16:41	18:41	47,37	11,68	-	Schwaz	Tirol	3~	2,1
29	12. Okt	16:53	18:53	47,34	11,67	11	Schwaz	Tirol	4	3,1
30	12. Okt	16:54	18:54	47,34	11,71	-	Schwaz	Tirol	3~	2,7
31	12. Okt	16:59	18:59	47,38	11,67	-	Schwaz	Tirol	3~	2,4
32	19. Okt	00:38	02:38	47,33	11,65	14	Schwaz	Tirol	5	4,0
33	19. Okt	02:18	04:18	47,32	11,63	7	Schwaz	Tirol	4	2,6
34	19. Okt	02:28	04:28	47,33	11,65	-	Schwaz	Tirol	3~	2,3
35	19. Okt	16:47	18:47	47,32	11,66	-	Schwaz	Tirol	3~	2,5
36	20. Okt	04:47	06:47	47,33	11,65	-	Schwaz	Tirol	3~	2,5
37	23. Okt	12:29	14:29	47,34	10,88	-	Mieminger Kette	Tirol	3~	2,3
38	23. Okt	12:40	14:40	47,35	10,88	12	Mieminger Kette	Tirol	4	3,2
39	23. Okt	12:43	14:43	47,34	10,88	-	Mieminger Kette	Tirol	3~	2,6
40	23. Okt	19:36	21:36	47,68	13,63	2#	Bad Ischl	Oberösterreich	3-4	2,4
41	25. Okt	20:00	22:00	47,25	9,53	8	bei Feldkirch	Liechtenstein	5	3,1
42	1. Dez	00:12	01:12	47,31	11,66	12	Schwaz	Tirol	3	2,5
43	1. Dez	00:19	01:19	47,37	11,69	9	Schwaz	Tirol	4	2,9
44	9. Dez	21:45	22:45	48,28	16,74	5	bei Marchegg	Niederösterreich	4	2,4

Nr	Datum	Weltzeit	Lokalzeit	Breite	Länge	Herdtiefe	Epizentrum	Land	Io	M∟
45	10. Dez	05:29	06:29	47,29	10,77	11	bei Imst	Tirol	3	2,4
46	10. Dez	08:32	09:32	48,30	16,82	6	bei Marchegg	Niederösterreich	4	2,5
47	10. Dez	08:33	09:33	48,29	16,82	8	bei Marchegg	Niederösterreich	4	2,8
48	20. Dez	20:50	21:50	46,63	13,84	5	Villach	Kärnten	3-4	1,9
49	20. Dez	20:54	21:54	46,64	13,84	5	Villach	Kärnten	3-4	1,9
50	20. Dez	23:48	00:48 ⁺	46,63	13,83	4	Villach	Kärnten	4	2,1

UTC = GMT

Lokallzeit Mitteleurop. Zeit (MEZ) bzw. Mitteleurop. Sommerzeit (MESZ)

Breite, Länge geographische Epizentralkoordinaten

Makroseismische Herdtiefe in km (log h = (M_L - 0.67 * I_0 + 2) / 2.33)

- Epizentralintensität (EMS-98 Europ. Makroseismische Skala) in Grad
- I₀ M∟

Weltzeit

h

()

* +

~

- Lokalmagnitude nach Richter Lokalintensität
- Herdtiefe festgesetzt
- - Maximalintensität in Österreich
 - Datumssprung beachten!
 - Intensität abgeschätzt, keine genauen Angaben

Abbildung 3: Verteilung der Epizentren verspürter Erdbeben in Österreich des Jahres 2010

Die **makroseismische Intensität** ist eine Klassifizierung der Bodenbewegung basierend auf den beobachteten Effekten in einem begrenzten Gebiet eines Erdbebens.

Um die seismische Intensität auf der 12-stufigen EMS-98 Skala eines Erdbebens zu ermitteln, ist der Österreichische Erdbebendienst darauf angewiesen, Fühlbarkeitsmeldungen von der betroffenen Bevölkerung zu erhalten. Im Jahr 2010 gingen 2301 Erdbeben-Wahrnehmungsberichte über das online-Bebenformular (www.zamg.ac.at/bebenmeldung) in der Zentrale ein. Jeder Ortschaft, in der ein Erdbeben verspürt wurde, wird ein Intensitätsgrad zugeschrieben. Die höchste Intensität wird im Bereich des Epizentrums erzielt, weiter entfernt wird die Erschütterungswirkung immer schwächer. Die daraus resultierende Intensitätskarte ergibt ein umfassendes Bild der Effekte eines Erdbebens. Die Farben der Punkte in den Abbildungen 4 bis 6 entsprechen den ermittelten Intensitäten des jeweiligen Bebens für die jeweiligen Ortschaften. Im Folgenden sind Intensitätskarten für drei der stärksten Erdbeben in Österreich des Jahres 2010 dargestellt:

Abbildung 4: Intensitätskarte für das Erdbeben bei Eibiswald in der Steiermark am 24. Juli 2010

Abbildung 5: Intensitätskarte für das Erdbeben bei Schwaz in Tirol am 19. Oktober 2010

Abbildung 6: Intensitätskarte für das Erdbeben in Liechtenstein am 25. Oktober 2010

Im Monat Oktober traten zwei bemerkenswerte **Erdbebenserien in Tirol** auf, die insgesamt 509 Ereignisse umfassten. Bei einer Erdbebenserie handelt es sich um ein gehäuftes Auftreten seismischer Ereignisse in einem bestimmten Gebiet. Die beiden "Hotspots" lagen bei Schwaz und im Mieminger Gebirge (Abb. 7).

Abbildung 7: Lage der beiden Erdbebenserien in Tirol

Zwischen dem 10. und 27. Oktober wurden im Raum Schwaz 432 Erdbeben registriert. Nach wenigen Vorbeben ereignete sich am 12. Oktober um 18:53 Uhr MESZ das erste fühlbare Erdbeben mit einer Magnitude von 3,1 auf der Richter-Skala. Wie in Abbildung 8 zu sehen ist, folgte während der nächsten Tage ein Schwarm kleiner Nachbeben, wobei sich die meisten bereits innerhalb der ersten 24 Stunden ereigneten.

Nach dem ersten Abklingen flammte die Erdbebentätigkeit am 19. Oktober erneut auf. Durch das Auftreten des Hauptbebens um 02:38 Uhr MESZ mit einer Magnitude von 4,0 nach Richter wurde abermals ein Bebenschwarm ausgelöst, der allerdings aus weniger Ereignissen bestand als der erste und nach drei Tagen zu Ende war.

Nach einer Unterbrechung von 5 Tagen konnten am 27. Oktober wieder 21 Nachbeben beobachtet werden, das stärkste hatte eine Magnitude von 1,2.

In Abbildung 9 ist zu sehen, dass die meisten Beben eine Magnitude kleiner als 1 hatten. Die Registrierung dieser energieschwachen Ereignisse (Mikrobeben) war nur mit Hilfe des hochempfindlichen Nahbeben-Stationsnetzes des Österreichischen Erdbebendienstes möglich, dessen Messinstrumente sich in unmittelbarer Nähe des Epizentrums befinden. Eine interessante Tatsache ist, dass wir heute auch Magnituden kleiner null bestimmen können. Charles Richter, der Schöpfer der Magnituden-Skala, hatte früher nicht so empfindliche Messgeräte und konnte daher nur Magnituden größer null bestimmen.

Abbildung 8: Bebenverteilung, Serie in Schwaz

Abbildung 9: Magnitudenverteilung, Serie in Schwaz

Für das Hauptbeben der Bebenserie von Schwaz, dem stärksten Erdbeben in Österreich des Berichtsjahres, wurde eine **Herdflächenlösung** erstellt, die dem besseren Verständnis der zugrundeliegenden Mechanik des Erdbebens und der Identifizierung der Ursache des Bebens dient. Mit Hilfe der Schwingungsrichtung des ersten Einsatzes der registrierten Erdbebenwelle (positiven und negativen Ausschläge für Stauchung und Dehnung des Untergrundes an den einzelnen seismischen Stationen) wird ein Berechnungsmodell zur Bestimmung der räumlichen Orientierung der Bruchflächen bei einem Erdbeben erstellt. Daraus können die Lage und die Bewegungsrichtung von Krusteneinheiten abgeleitet werden.

In den als "Beach Balls" (engl. Strandbälle) bezeichneten Diagrammen (Abb. 10) werden die positiven und negativen Ausschläge in schwarzen bzw. weißen Zonen dargestellt. So lässt sich für das Erdbeben bei Schwaz ableiten, dass die Orientierung der Bruchfläche parallel zum Inntal in nordöstlich/südwestlicher Richtung verläuft. Die in der Farbe Schwarz dargestellten Stauchungen der Ersteinsätze an verschiedenen seismischen Stationen verweisen auf einen Aufschiebungsvorgang der Krustenblöcke, der sich in einer Tiefe von etwa 14 km abspielte. Dabei bewegte sich der alpine Deckenstapel von Süden her (mit einem vertikalen Einfallswinkel von etwa 45°) in nordwestlicher Richtung über die in der Tiefe liegende Europäische Platte.

Herdflächenlösung Erdbeben in Schwaz in Tirol, 19. Oktober 2010

Zentralanstalt für Meteorologie und Geodynamik Hohe Warte 38 1190 Wien

Österreichischer Geophysikalischer Dienst an der Zentralanstalt für Meteorologie und Geodynamik www.zamg.ac.at

Abbildung 10: Herdflächenlösung für das Erdbeben in Schwaz am 19. Oktober 2011 um 02.38 Uhr MESZ

Im Oktober 2010 konnte ein weiterer **Bebenschwarm südlich von Ehrwald in Tirol** beobachtet werden. Es handelte sich um 77 Ereignisse, die sich am 23. Oktober zwischen 14:06 Uhr und 16:23 Uhr MESZ ereigneten. Auch hier gab es zunächst einige schwache Vorbeben. Dann folgten, begleitet von weiteren schwachen Ereignissen, innerhalb von nur 20 Minuten fünf Erdbeben mit einer Magnitude größer als 2, sowie das Hauptbeben mit einer Magnitude von 3,2, das von der Bevölkerung kräftig verspürt wurde. Etwa eineinhalb Stunden später war der Schwarm wieder zu Ende. Abbildung 11 zeigt die zeitliche Verteilung der Ereignisse. In Abbildung 12 ist die Häufigkeitsverteilung der Magnituden dargestellt - man erkennt, dass ähnlich wie bei der Serie in Schwaz die meisten Ereignisse sehr geringe Magnituden aufwiesen.

Abbildung 11: Bebenverteilung, Serie in Ehrwald

Abbildung 12: Magnitudenverteilung, Serie in Ehrwald

3. AUSGEWÄHLTE WELTWEITE ERDBEBEN

Im Jahr 2010 ereignete sich weltweit ein einziges Erdbeben mit einer Magnitude großer 8, dieser Wert entspricht dem langjährigen Durchschnitt. Das seismische Messnetz des Österreichischen Erdbebendienstes erfasste alle 22 weltweiten Erdbeben, die Magnituden größer oder gleich 7 hatten (Abb. 13). 151 Erdbeben wiesen Magnituden zwischen 6,0 und 6,9 auf. Weitere 1028 weltweite Starkbeben mit Magnituden zwischen 5,0 und 5,9 wurden mit den seismischen Stationen in Österreich aufgezeichnet.

Durch die weltweite Erdbebenaktivität waren im Berichtsjahr entsprechend den Abgaben von U.S. Geological Survey (USGS) 320.129 Todesopfer zu beklagen, wobei fast alle einem einzigen Erdbeben zum Opfer fielen, dem Katastrophenbeben von Haiti am 12. Jänner 2010.

In Abbildung 13 und in der nachfolgenden Tabelle sind solche Erdbeben wiedergegeben, die Schäden hervorriefen oder Magnituden größer oder gleich 7 aufwiesen.

Zentralanstalt für Meteorologie und Geodynamik Hohe Warte 38 1190 Wien Österreichischer Geophysikalischer Dienst http://www.zamg.ac.at seismo@zamg.ac.at

Abbildung 13: Weltweite Verteilung von Erdbeben mit Schadenswirkung oder mit Magnituden M größer oder gleich 7 des Jahres 2010

Weltweite Erdbeben mit Schadenswirkung oder mit Magnituden M größer oder gleich 7 des Jahres 2010 (USGS)

Datum	Weltzeit	М	Epizentrum	Kommentar
2. Jan 10	02:15	5,3	Tadschikistan 38,233°N 71,500°E	98 zerstörte und etwa 1000 beschädigte Gebäude, 783 Obdachlose
3. Jan 10	22:36	7,1	Solomoneninseln 8,799°S 157,360°E	mind. 60 Gebäude beschädigt, einige Schäden bedingt durch 3 m hohen Tsunami
10. Jan 10	00:27	6,5	USA, vor Nord-Kalifornien 40,652°N 124,692°W	Dutzende Verletzte, leichte Gebäudeschäden in Eureka, Ferndale und Samoa
12. Jan 10	21:53	7,0	Haiti 18,449°N 72,544 °W	Mehr als 200 000 Todesopfer und schwerste Schäden in der Region Port-au-Prince
18. Feb 10	01:13	6,8	Grenze Russland, China, N-Korea 42,606°N 130,703°E	Keine Schäden bekannt, verspürt auch in Peking; sehr große Herdtiefe
25. Feb 10	04:56	5,0	China, Yünnan 25,536°N 101,919°E	35 Verletzte, zahlreiche Gebäude beschädigt
26. Feb 10	20:31	7,0	Japan, vor Okinawa 25,902°N 128,417°E	Zwei Personen verletzt
27. Feb 10	06:34	8,8	Chile, vor der Küste 35,846°S 72,719°W	Über 700 Tote, enorme Schäden an Gebäuden und Infrastruktur, Tsunami bis 6 m Höhe
27. Feb 10	15:45	6,3	Argentinien, Jujuy 24,588°S 65,432°W	Zwei Personen getötet, einige Personen verletzt, Schäden an Gebäuden
5. März 10	11:47	6,6	Chile, vor Küste Bio-Bio 36,600°S 73,230°W	Nachbeben zum Erdbeben vom 27. Feb.10

Datum	Weltzeit	м	Epizentrum	Kommentar
8. März 10	02:32	6,1	Ost-Türkei 38,873°N 39,98119°E	Mind. 51 Todesopfer, 100 Verletzte, 5000 Obdachlose sowie 287 zerstörte und 700 schwer beschädigte Gebäude in Regionen Basyurt, Demirci, Kovancilar und Okcular
11. März 10	14:39	6,9	Chile, Libertador O'Higgins 34,259°S 71,929°W	Nachbeben zum Erdbeben vom 27. Feb.10 Schäden in Rancagua, kleiner Tsunami (29cm)
4. April 10	22:40	7,2	Mexiko, Baja California 32,128°N 115,303°W	2 Tote, mind. 233 Verletzte, Schäden an Gebäuden, Brücken und Straßen
6. April 10	22:15	7,8	Nordsumatra 2,363°N 97,133°E	Einige Verletzte, Schäden an Gebäuden
11. April 10	22:08	6,3	Südspanien 37,022°N 3,517°W	Aufgrund der großen Herdtiefe von mehr als 600 km keine größeren Schäden
13. April 10	23:49	6,9	China, Qinghai 33,224°N 96,666°E	Mind. 2183 Tote, mehr als 12000 Verletzte, schwere Schäden
18. April 10	20:28	5,6	Afghanistan 35,668°N 67,657°E	11 Personen getötet, mehr als 70 Verletzte, 2000 Häuser beschädigt
6. Mai. 10	02:42	6,2	Chile, vor Küste von Tarapaca 18,056°S 70,549°W	11 Verletzte, einige leicht beschädigte Gebäude, Erdrutsche bei Tacna
9. Mai 10	05:59	7,2	Nord-Sumatra 3,750°N 96,034°E	Leichte Schäden und Stromausfälle auf Simeulue
16. Mai 10	05:16	5,4	Puerto Rico 18,400°N 67,070°W	Leichte Schäden in Lares und Vega , Erdrutsch in Utuado
27. Mai 10	17:14	7,1	Vanuatu 13,698°S 166,643°E	Keine Schäden gemeldet
12. Juni 10	19:26	7,5	Region Nikobaren-Inseln 7,848°N 91,918°E	Minimale Schäden in Port Blair, verspürt bis Malaysia, Singapur und Thailand
15. Juni 10	04:26	5,7	Süd-Kalifornien 32,700°N 115,921°W	Beschädigte Gebäude in Ocotillo
16. Juni 10	03:16	7,0	Nordküste von Papua, Indonesien 2,170°S 136,552°E	17 Todesopfer, 4600 Obdachlose und mehr als 2500 Gebäude beschädigt oder zerstört, Erdrutsche auf Yapen
16. Juni 10	03:58	6,6	Indonesien, Nordküste Papua N.G. 2,324°S 136,505°E	Schweres Nachbeben kurz nach dem Hauptbeben
18. Juli 10	13:34	7,3	Papua N.G., Region Neubritannien 5,940°S 150,565°E	Keine Schäden gemeldet
23. Juli 10	22:08	7,3	Philippinen, Golf v. Moro, Mindanao 6,716°N 123,416°E	Herdtiefe 604 km; keine Schäden gemeldet
23. Juli 10	22:51	7,6	Philippinen, Golf v. Moro, Mindanao 6,508°N 123,484°E	Herdtiefe 580 km; keine Schäden gemeldet
23. Juli 10	23:15	7,4	Golf v. Moro, Mindanao, Philippinen 6,809°N 123,266°E	Herdtiefe 636 km; keine Schäden gemeldet
4. Aug. 2010	22:01	7,0	Papua N.G., Region Neubritannien 5,768°S 150,776°E	Keine Schäden gemeldet
10. Aug. 2010	05:23	7,3	Vanuatu 17,561°S 168,03°E	Keine Schäden gemeldet
12. Aug. 2010	11:54	7,1	Ecuador 1,128°S 77,306°W	Herdtiefe 204 km; keine Schäden gemeldet
16. Aug. 2010	12:54	4,3	Italien, nördlich von Sizilien 38,320°N 14,980°E	Mehrere Erdrutsche auf Lipari, einige Sachschäden, 7 Verletzte durch Flucht ins Meer, das voll von Quallen war
3. Sep. 2010	16:35	7,0	Neuseeland, Südinsel 43,530°S 172,120°E	2 Schwerverletzte, 6 Brücken und viele Gebäude in Christchurch beschädigt
27. Sep. 2010	11:22	5,8	Süd-Iran 29,651°N 51,690°E	1 Todesopfer, 3 Verletzte, leichte Schäden in der Region
29. Sep. 2010	17:11	7,2	Indonesien, vor S-Küste v. Papua 4,920°S 133,783°E	Tsunamialarm, keine größeren Schäden bzw. gefährliche Flutwelle gemeldet; Vorbeben M6,2
13. Okt. 2010	14:06	4,4	USA, Oklahoma 35,192°N 97,320°W	Zwei Verletzte in Norman
25. Okt. 2010	14:42	7,8	Indonesien, SW von Sumatra 3,484°S 100,114°E	Mind. 435 Todesopfer durch 3 m hohen Tsunami auf den Mentawai-Inseln vor Sumatra, zahlreiche Dörfer wurden zerstört
3. Nov. 2010	00:56	5,3	Serbien 43,776°N 20,679°E	Zwei Todesopfer und mehrere Verletzte in Kraljevo (siehe Fotos unten)

Datum	Weltzeit	м	Epizentrum	Kommentar
6. Nov. 2010	03:52	4,9	West-Iran 33,370°N 48,90°E	Mindestens 20 Verletzte, einige beschädigte Häuser und Stromausfälle bei Dorud-Razan
19. Dez. 2010	12:14	5,1	Äthiopien 7,551°N 37,837°E	Dutzende Verletzte und Gebäudeschäden im Gebiet von Jima
20. Dez. 2010	18:42	6,7	Südost-Iran 28,440°N 59,168°E	Mindestens 7 Todesopfer und 25 Verletzte,3 Dörfer im östlichen Kerman zerstört
21. Dez. 2010	17:19	7,4	Japan, Bonin-Inseln 26,901°N 143,698°E	Keine Schäden gemeldet
24. Dez. 2010	23:43	5,5	Puerto Rico 18,249°N 66,131°W	Leichte Gebäudeschäden
25. Dez. 2010	13:16	7,3	Region Vanuatu 19,702°S 167,947°E	Keine Schäden gemeldet
25. Dez. 2010	21:30	4,9	Neuseeland 43,55°S 172,66°E	Schäden in Christchurch, 115 Gebäude unbewohnbar

Das Erdbeben mit den meisten Todesopfern des Jahres 2010 fordere das **Katastrophenbeben von Haiti am 12. Jänner 2010**. Um 16h53 Ortszeit erschütterte ein Beben der Magnitude 7 den Karibikstaat, dessen Epizentrum nur 20 Kilometer entfernt von der Hauptstadt Port-au-Prince lag. Aufgrund der relativ geringen Herdtiefe von 13 km, der schlechten Bausubstanz und der hohen Bevölkerungsdichte waren die Auswirkungen katastrophal. Nach offiziellen Angaben wurden dabei 316.000 Personen getötet, 300.000 verletzt, 1,3 Millionen Einwohner wurden obdachlos, 97.294 Häuser wurden zerstört, 188.383 Gebäude wurden beschädigt. Die Ermittlung der genauen Opferzahlen erwies sich als schwierig, da viele der Opfer nicht identifiziert und ohne genaue Zählung in Massengräbern begraben wurden. Insgesamt waren etwa drei Millionen Menschen von dem Erdbeben betroffen, dies entspricht einem Drittel der Bevölkerung Haitis. Vier Personen verloren durch einen lokalen Tsunami ihr Leben.

Damit handelt es sich um das schwerste Beben in der Geschichte Nord- und Südamerikas sowie um das bislang weltweit verheerendste Beben des 21. Jahrhunderts. Die Opferzahl ist damit noch höher als jene anlässlich der Tsunami-Katastrophe im Indischen Ozean vom 26. Dezember 2004. Der finanzielle Schaden wird auf etwa 8 Mrd. US-\$ geschätzt (Quelle: Münchner Rückversicherung). In den darauffolgenden Tagen gab es Dutzende Nachbeben, die beiden Stärksten hatten eine Magnitude von 5,9 und 6,0.

Abbildung 14: Schäden nach dem schweren Erdbeben in Haiti Bildquellen: http://www.diakonie-katastrophenhilfe.de/downloads/erdbeben_haiti_20100117_07.JPG http://www.boston.com/bigpicture/2010/01/haiti_six_days_later.html

Ursache für das Beben ist die Verschiebung zweier Kontinentalplatten: Die Karibische Platte bewegt sich mit einer Geschwindigkeit von ca. 20 mm pro Jahr relativ zur Nordamerikanischen Platte in Richtung Osten. Konkret ereignete sich das Erdbeben an der sogenannten Enriquillo-Plantain Garden Bruchzone, die südlich von Port-au-Prince etwa in Ost-West-Richtung verläuft. Nach dem Hauptbeben wurde eine signifikante Hebung des Bodens im Bereich des Léogâne-Deltas westlich der Hauptstadt festgestellt.

Das Seismogramm des Erdbebens von Haiti, das an der seismischen Station am Conrad-Observatorium in Niederösterreich registriert wurde, ist in Abbildung 15 dargestellt.

Abbildung 15: Registrierung der P-Welle (22h05 UTC) und der Oberflächenwelle (22h28 UTC) des Haiti-Bebens am 12.1.2010 an der seismischen Station CSNA des Österreichischen Erdbebendienstes der ZAMG am Conrad-Observatorium in Niederösterreich

Das stärkste Beben des Jahres ereignete sich mit einer Magnitude 8,8 am **27. Feber 2010 vor der Küste Chiles**. Es hatte 577 Todesopfer zur Folge, die Hälfte der Opfer kam bei einem Tsunami mit Wellenhöhen bis zu 6 Metern uns Leben.

Ursache für das Beben war eine plötzliche Verschiebung der pazifischen Nazca-Platte unter die südamerikanische Kontinentalplatte, und das gleich um etwa 10 Meter. Das Erdbeben führte in einem Gebiet, das vergleichbar mit der Größe der Schweiz ist, zu katastrophalen Zerstörungen. Da sich das Erdbeben in der Nacht auf Samstag um 3:34 Uhr chilenischer Zeit ereignete, befanden sich die meisten Menschen zu Hause und nicht auf Verkehrswegen oder in Bürogebäuden, die trotz der erdbebenangepassten Bauweise schwere Schäden davon trugen (siehe Abb. 16).

Abbildung 16: Schäden nach schwerem Erdbeben in Chile Bildquellen: http://www.kleinezeitung.at/nachrichten/chronik/2306527/kaerntner-bangt-um-seine-freunde-chile.story http://inapcache.boston.com/universal/site_graphics/blogs/bigpicture/chile_02_27/c01_22413499.jpg

Das Katastrophenbeben von Haiti vom 12. Jänner 2010 war mit einer Magnitude von 7,0 wesentlich schwächer – es hatte weniger als 1 % der Erdbebenenergie des chilenischen Erdbebens. Trotzdem gab es auf Haiti eine weit höhere Opferzahl, da durch die Lage des Epizentrums das "Herz" der Insel, die Hauptstadt Port au Prince mit seiner weitgehend nicht erdbebensicheren Bauweise direkt getroffen wurde, während sich das chilenische Beben in einem vergleichsweise weniger dicht besiedelten Gebiet und außerdem vor der Küste Chiles ereignete.